Null mutants and CRISPR/Cas knockouts and mutagenesis

P450 phenotypes or activities as revealed by null mutants and CRISPR/Cas knockouts and mutagenesis: For null mutants the phenotype is indicated. For CRISPR/Cas (indicated as CC9), the result is lower toxicity or metabolism of the listed chemical(s). Negative results are listed when available.

CYPspeciesnull mutants or CRISPR/Cas9reference
CYP2 clan
CYP15B1 Aedes aegypti CC9: null mutant viable,impairs reproductive successNouzova et al., 2021
CYP15C1Bombyx mori mod null mutant causes precocious metamorphosis, rescued by transgenic expression of wt CYP15C1 Daimon et al., 2012
CYP18A1Drosophila melanogasterP-element insertion causes pupal lethality Guittard et al., 2011
CYP303A1Drosophila melanogasternomph mutants disrupt development of sensory bristles Willingham & Keil, 2004
CYP303A1Drosophila melanogasternull mutants cause embryonic lethality, rescued by transgenic expression of wt Wu et al., 2019
CYP304F1Spodoptera lituraCC9:ß-cypermethrin, chlorpyriphos,no effect on fenvalerate,cyhalothrin, phoximXu et al., 2022
CYP306A1Drosophila melanogasterphantom (phm)E7 mutant allele causes embryonic lethality Niwa et al., 2004; Warren et al., 2004
CYP306A1Drosophila melanogasterphantom (phm)null alleles block border cell migration when the entire follicular epithelium of an egg chamber is mutantDomanitskaya et al., 2014
CYP307A1Drosophila melanogasterspook (spo) mutants cause embryonic lethality, rescued by transgenic expression of Drosophila or Bombyx wtNamiki et al., 2005, Ono et al., 2006
CYP360A8Daphnia magnaCC9:paraquatReligia et al., 2021
CYP384A1Tetranychus kanzawailemon mutant inactivates carotenoid ketolase activity Wybouw et al., 2019
CYP384A1Tetranychus urticaeCC9: mutant inactivates carotenoid ketolase activity: yellow colored mites De Rouck et al., 2024
CYP3 clan
CYP6A17Drosophila melanogasterdeltamethrin Duneau et al., 2018
CYP6A17Drosophila melanogasterpermethrin Battlay et al., 2018
CYP6B207 (wrongly called CYP6B1)and CYP6B215 (wrongly called CYP6B5k)Papilio xuthusCC9: G0 larvae with both genes edited: growth and development inhibited after xanthotoxin feedingMiyashita et al., 2024
CYP6D2Drosophila melanogastercamptothecin, but not topotecan or irinotecan Thomas et al., 2013
CYP6D4Drosophila melanogasterviable, no effect on toxicity of 8 insecticides Hardstone et al., 2006
CYP6G1Drosophila melanogaster CC9: imidacloprid (but not in Canton-S) Denecke et al., 2017
CYP6G1Drosophila melanogaster CC9: malathion, azinphos-methyl, diazinon Battlay et al., 2018
CYP6G2Drosophila melanogaster CC9:severe disruption in larval-pupal metamorphosis, reproductive deficiencies, reduced JH titer Jia et al., 2024
CYP6T3Drosophila melanogaster CC9: no effect on development,no role in ecdysteroidogenesis Shimell & O'Connor, 2022
CYP6AE14to12Helicoverpa armigera CC9: cluster KO, xanthotoxin, 2-tridecanone, esfenvalerate, indoxacarbWang et al, 2018
CYP6BQ7Tribolium castaneum CC9: artemisia essential oilZhang et al., 2021
CYP6CS1Nilaparvata lugens CC9: imidacloprid, thiamethoxam, nitenpyram, dinotefuran,pymetrozine,but NOT chlorpyrifos, buprofezin, triflumezopyrimZhang et al., 2023
CYP6ER1Nilaparvata lugensCC9:imidacloprid,thiacloprid,acetamiprid,nitenpyram,clothianidin,dinotefuran,flupyradifurone,sulfoxaflorZhang et al., 2023
CYP9A9Spodoptera exiguaCC9:2 copies of CYP9A9, λ-cyhalothrin Zuo et al., 2025
CYP9A98to40Spodoptera exigua CC9:cluster KO with CYP9A186(F116V), abamectin, emamectin benzoateZuo et al. 2021
CYP9A107to40Spodoptera exigua CC9: cluster KO, no change in resistance levelZuo et al. 2021
CYP9A98to107Spodoptera exigua CC9: cluster KO with CYP9A186(F116V), abamectin, emamectin benzoateZuo et al. 2021
CYP9A186(F116V)Spodoptera exiguaCC9:abamectin, emamectin benzoateZuo et al. 2021
CYP9A98to40Spodoptera exiguaCC9: 10 genes cluster KO,esfenvalerate, abamectin, indoxacarb, imperatorinShi et al. 2023
CYP9A60to32Spodoptera frugiperda CC9: 13 genes cluster KO,esfenvalerate, abamectin, xanthotoxinShi et al. 2023
CYP9M10Culex quinquefasciatus TALEN knockout / permethrinItokawa et al., 2016
CYP4 clan
CYP4D8Drosophila melanogasterspinosad, but decreased toxicity of zeta-permethrinTabuloc et al.,2024
CYP4D14Drosophila melanogasterzeta-permethrin, spinosadTabuloc et al.,2024
CYP4D21 (wrongly called SXE1)Drosophila melanogasterdecreased mating success of male null mutants,lipid profile in male heads alteredFujii et al., 2008
CYP4G1Drosophila melanogasternull mutants die at late pupal stage / adult eclosion Gutierrez et al., 2007
CYP4G8Helicoverpa armigera CC9: blocks Me-branched CHC and lethal at pupation Xin et al., 2022
CYP4G9, G10, G26, G87Helicoverpa armigera CC9:cluster KO of 4G1-type: no effect noticed Xin et al., 2022
Mito clan
CYP301A1Drosophila melanogasterpiggyBac insertion in CYP301A1 changing C-terminal from KMTRV* to NPRKIIIL* cause abdominal cuticle defects at adult emergence Sztal et al., 2012
CYP302A1Drosophila melanogasterdisembodied(dib)mutants cause embryonic lethality Warren et al. 2002
CYP314A1Drosophila melanogastershade(shd)mutants cause embryonic lethality Petryk et al 2003
CYP314A1Drosophila melanogastershade(shd)null allele blocks border cell migration when the entire follicular epithelium of an egg chamber is mutantDomanitskaya et al., 2014
CYP314A1Drosophila melanogasterCC9: KO cell line has elevated dengue virus 2 replicationLi et al., 2024
CYP315A1Drosophila melanogastershadow (sad) mutants cause embryonic lethality Warren et al. 2002
CYP315A1Bombyx mori CC9: 14 aa deletion mutants cannot molt from 2nd to 3rd instar Zhu et al. 2021