User Tools

Site Tools


effects_of_p450_knockdown_by_rnai

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
effects_of_p450_knockdown_by_rnai [2025/10/24 09:27] renefeyereiseneffects_of_p450_knockdown_by_rnai [2025/12/23 17:20] (current) renefeyereisen
Line 4: Line 4:
  
 Use the filter below to search by CYP, species, pesticide etc. Use the filter below to search by CYP, species, pesticide etc.
 +
  
  
Line 13: Line 14:
 ^CYP15A1|Tribolium castaneum| |no precocious pupation when injected in 3rd, 4th or 5th larval stages|Minakuchi et al., 2015|doi.org/10.1016/j.jinsphys.2015.04.008| ^CYP15A1|Tribolium castaneum| |no precocious pupation when injected in 3rd, 4th or 5th larval stages|Minakuchi et al., 2015|doi.org/10.1016/j.jinsphys.2015.04.008|
 ^CYP15A1| Anthonomus grandis |  | no effect |Vasquez et al., 2023|doi.org/10.3389/fmolb.2023.1073721  | ^CYP15A1| Anthonomus grandis |  | no effect |Vasquez et al., 2023|doi.org/10.3389/fmolb.2023.1073721  |
 +^CYP15A1|Scleroderma guani|  |decresed JH titer|Ouyang et al., 2025|doi.org/10.1021/acs.jafc.5c07533| 
 ^CYP15C1|Chilo suppressalis|  |delayed development, increased mortality|Sun et al., 2020|doi.org/10.1002/PS.5789  | ^CYP15C1|Chilo suppressalis|  |delayed development, increased mortality|Sun et al., 2020|doi.org/10.1002/PS.5789  |
 ^CYP15F1|Reticulitermes flavipes|  |decrease in presoldier formation|Tarver et al., 2012|doi.org/10.1002/arch.21030| ^CYP15F1|Reticulitermes flavipes|  |decrease in presoldier formation|Tarver et al., 2012|doi.org/10.1002/arch.21030|
Line 21: Line 23:
 ^CYP18A1|Henosepilachna vigintioctopunctata (Coleoptera)|  |disruption of pupation and adult emergence| Zhang et al. 2024|doi.org/10.1002/arch.22111| ^CYP18A1|Henosepilachna vigintioctopunctata (Coleoptera)|  |disruption of pupation and adult emergence| Zhang et al. 2024|doi.org/10.1002/arch.22111|
 ^CYP18A1|Solenopsis invicta|no effect of flonicamid (in queens)| |Zhang et al., 2024|doi.org/10.1021/acs.jafc.4c08903 | ^CYP18A1|Solenopsis invicta|no effect of flonicamid (in queens)| |Zhang et al., 2024|doi.org/10.1021/acs.jafc.4c08903 |
 +^CYP18A1|Tribolium castaneum|  |developmental arrest at dorsal closure stage of embryogenesis|Cheng et al., 2023|doi.org/10.1038/s41559-023-02246-y|
 ^CYP303A1|Drosophila melanogaster| |eclosion lethality|Wu et al., 2019|doi.org/10.1016/j.ibmb.2019.103210| ^CYP303A1|Drosophila melanogaster| |eclosion lethality|Wu et al., 2019|doi.org/10.1016/j.ibmb.2019.103210|
 ^CYP303A1|Locusta migratoria|malathion, chlorpyrifos, deltamethrin, carbaryl|lethal - molting/ecdysis disrupted,lower desication tolerance, modified CHC profile|Wu et al, 2020|doi.org/10.1016/j.pestbp.2020.104637| ^CYP303A1|Locusta migratoria|malathion, chlorpyrifos, deltamethrin, carbaryl|lethal - molting/ecdysis disrupted,lower desication tolerance, modified CHC profile|Wu et al, 2020|doi.org/10.1016/j.pestbp.2020.104637|
Line 93: Line 96:
 ^CYP6B41 (called 088)|Spodoptera litura|imidacloprid | |Cheng et al., 2017|doi.org/10.1038/s41559-017-0314-4| ^CYP6B41 (called 088)|Spodoptera litura|imidacloprid | |Cheng et al., 2017|doi.org/10.1038/s41559-017-0314-4|
 ^CYP6B50|Spodoptera litura|xanthotoxin| |Lu et al., 2019|doi.org/10.1016/j.pestbp.2019.06.004| ^CYP6B50|Spodoptera litura|xanthotoxin| |Lu et al., 2019|doi.org/10.1016/j.pestbp.2019.06.004|
 +^CYP6B50|Spodoptera frugiperda|xanthotoxin|chlorantraniliprole, tetrachlorantraniliprole, idoxacarb, λ-cyhalothrin, deltamethrin | |Guo et al., 2025|doi.org/10.1016/j.jare.2025.06.083|
 ^CYP6B53|Lymantria dispar|  |larval feeding inhibited, delayed growth lower when dsRNA transgenically expressed in poplar host|Sun et al., 2022|doi.org/10.1111/aab.12752| ^CYP6B53|Lymantria dispar|  |larval feeding inhibited, delayed growth lower when dsRNA transgenically expressed in poplar host|Sun et al., 2022|doi.org/10.1111/aab.12752|
 ^CYP6B78 (wrongly called CYP6B6)|Mythimna separata|chlorogenic acid|  |Lin et al., 2022|doi.org/10.3389/fpls.2022.1015095| ^CYP6B78 (wrongly called CYP6B6)|Mythimna separata|chlorogenic acid|  |Lin et al., 2022|doi.org/10.3389/fpls.2022.1015095|
Line 159: Line 163:
 ^CYP6AY1|Nilaparvata lugens|nicotine|  |Gong et al., 2023| doi.org/10.1016/j.ecoenv.2023.115383| ^CYP6AY1|Nilaparvata lugens|nicotine|  |Gong et al., 2023| doi.org/10.1016/j.ecoenv.2023.115383|
 ^CYP6AY1|Nilaparvata lugens|nitenpyram |  |Zhang et al., 2025|doi.org/10.1021/acs.jafc.5c00803| ^CYP6AY1|Nilaparvata lugens|nitenpyram |  |Zhang et al., 2025|doi.org/10.1021/acs.jafc.5c00803|
 +^CYP6AY1|Nilaparvata lugens|etofenprox|  |Zhang et al., 2026|/doi.org/10.1021/acs.est.5c11107|
 ^CYP6AY3|Laodelphax striatellus|  |increases RBSDV virus abundance  |Zhang et al., 2021|doi.org/10.3390/v13081576 | ^CYP6AY3|Laodelphax striatellus|  |increases RBSDV virus abundance  |Zhang et al., 2021|doi.org/10.3390/v13081576 |
 ^CYP6BB4|Culex pipens pallens|deltamethrin|  |Zou et al., 2019|doi.org/10.1111/imb.12571| ^CYP6BB4|Culex pipens pallens|deltamethrin|  |Zou et al., 2019|doi.org/10.1111/imb.12571|
Line 220: Line 225:
 ^CYP6DB3|Bemisia tabaci Q|imidacloprid, thiamethoxam| |Wei et al., 2023|doi.org/10.1016/j.pestbp.2023.105468 | ^CYP6DB3|Bemisia tabaci Q|imidacloprid, thiamethoxam| |Wei et al., 2023|doi.org/10.1016/j.pestbp.2023.105468 |
 ^CYP6BD5 (not BD)|Diaphorina citri|imidacloprid|  |Tian et al., 2019|doi.org/10.1002/ps.5260| ^CYP6BD5 (not BD)|Diaphorina citri|imidacloprid|  |Tian et al., 2019|doi.org/10.1002/ps.5260|
-^CYP6DB8 (formerly CYP6BD12)|Nilaparvata lugens|decreases tox of chlorpyrifos| |Zhang et al., 2023|doi.org/10.1021/acs.jafc.2c08957|+^CYP6DB8 (formerly CYP6BD12)|Nilaparvata lugens|decreases tox of chlorpyrifos, but not clorpyriphos-oxon| |Zhang et al., 2023|doi.org/10.1021/acs.jafc.2c08957|
 ^CYP6DC1|Aphis gossypii|acetamiprid |  |Ullah et al. 2023|doi.org/ 10.1127/entomologia/2023/2002| ^CYP6DC1|Aphis gossypii|acetamiprid |  |Ullah et al. 2023|doi.org/ 10.1127/entomologia/2023/2002|
 ^CYP6DC1|Rhopalosiphum padi|λ-cyhalothrin| |Wang et al., 2022|doi.org/10.1016/j.pestbp.2022.105088| ^CYP6DC1|Rhopalosiphum padi|λ-cyhalothrin| |Wang et al., 2022|doi.org/10.1016/j.pestbp.2022.105088|
Line 270: Line 275:
 ^CYP6FL1|Laodelphax striatellus|triflumezopyrim|  | Yang et al. 2022|doi.org/10.1016/j.ijbiomac.2022.10.029| ^CYP6FL1|Laodelphax striatellus|triflumezopyrim|  | Yang et al. 2022|doi.org/10.1016/j.ijbiomac.2022.10.029|
 ^CYP6FU1|Laodelphax striatellus|etofenprox|  |Sun et al., 2017|doi.org/10.1016/j.pestbp.2016.08.009 | ^CYP6FU1|Laodelphax striatellus|etofenprox|  |Sun et al., 2017|doi.org/10.1016/j.pestbp.2016.08.009 |
 +^CYP6FU1|Nilaparvata lugens|etofenprox|  |Zhang et al., 2026|/doi.org/10.1021/acs.est.5c11107|
 ^CYP6FV12|Bradysia odoriphaga|imidacloprid|  |Chen et al., 2019|doi.org/10.1016/j.pestbp.2018.11.009| ^CYP6FV12|Bradysia odoriphaga|imidacloprid|  |Chen et al., 2019|doi.org/10.1016/j.pestbp.2018.11.009|
 ^CYP6FV21|Bradysia odoriphaga|clothianidin|  |Zhang et al., 2023|doi.org/10.1002/ps.7482| ^CYP6FV21|Bradysia odoriphaga|clothianidin|  |Zhang et al., 2023|doi.org/10.1002/ps.7482|
Line 398: Line 404:
 ^CYP402B2 (wrongly called CYP6K1)|Bemisia tabaci (MEAM1)|abamectin|  |Zhou et al., 2024|doi.org/10.3390/insects15060399| ^CYP402B2 (wrongly called CYP6K1)|Bemisia tabaci (MEAM1)|abamectin|  |Zhou et al., 2024|doi.org/10.3390/insects15060399|
 ^CYP402C1|Bemisia tabaci|imidacloprid|  |Guo et al.,2023|doi.org/10.1111/1744-7917.13081   | ^CYP402C1|Bemisia tabaci|imidacloprid|  |Guo et al.,2023|doi.org/10.1111/1744-7917.13081   |
 +^CYP402C18|Bemisia tabaci|dimpropyridaz|  |Tang et al.,2026|doi.org/10.1016/j.pestbp.2025.106808|
 ^CYP408A1|Nilaparvata lugens| ethofenprox, nitenpyram,imidacloprid|  |Yang et al., 2024|doi.org/10.1016/j.pestbp.2024.105939| ^CYP408A1|Nilaparvata lugens| ethofenprox, nitenpyram,imidacloprid|  |Yang et al., 2024|doi.org/10.1016/j.pestbp.2024.105939|
 ^CYP408A3|Sogatella furcifera|chlorpyrifos| |Ruan et al., 2021|doi.org/10.3390/biology10080795| ^CYP408A3|Sogatella furcifera|chlorpyrifos| |Ruan et al., 2021|doi.org/10.3390/biology10080795|
Line 467: Line 474:
 ^CYP4AA1|Solenopsis invicta| flonicamid|  | Zhang et al., 2023 |doi.org/10.1016/j.pestbp.2023.105651| ^CYP4AA1|Solenopsis invicta| flonicamid|  | Zhang et al., 2023 |doi.org/10.1016/j.pestbp.2023.105651|
 ^CYP4AU1|Tuta absoluta|tetraniliprole|  |Ullah et al., 2025|doi.org/10.3390/ijms26115180| ^CYP4AU1|Tuta absoluta|tetraniliprole|  |Ullah et al., 2025|doi.org/10.3390/ijms26115180|
-^CYP4AU10|Chilo suppressalis|cyproflanilide|  |Zhou et al., 2023|doi.org/10.3390/ijms24065461|+^CYP4AU1 formerly CYP4AU10|Chilo suppressalis|cyproflanilide|  |Zhou et al., 2023|doi.org/10.3390/ijms24065461|
 ^CYP4BN6|Tribolium castaneum|artemisia essential oil| |Gao et al., 2020|doi.org/10.3389/fgene.2020.00589 | ^CYP4BN6|Tribolium castaneum|artemisia essential oil| |Gao et al., 2020|doi.org/10.3389/fgene.2020.00589 |
 ^CYP4BN6|Tribolium castaneum|dichlorvos, (marginal effect on carbofuran)| |Xiong et al., 2020|doi.org/10.1002/ps.5384| ^CYP4BN6|Tribolium castaneum|dichlorvos, (marginal effect on carbofuran)| |Xiong et al., 2020|doi.org/10.1002/ps.5384|
Line 537: Line 544:
 ^CYP405D1|Tuta absoluta|tetraniliprole|  |Ullah et al., 2025|doi.org/10.3390/ijms26115180| ^CYP405D1|Tuta absoluta|tetraniliprole|  |Ullah et al., 2025|doi.org/10.3390/ijms26115180|
 ^CYP417A2|Laodelphax striatellus|triflumezopyrim |  |Yang et al., 2024|doi.org/10.1002/ps.7905| ^CYP417A2|Laodelphax striatellus|triflumezopyrim |  |Yang et al., 2024|doi.org/10.1002/ps.7905|
-^CYP425A1|Laodelphax striatellus|etofenprox|  |Sun et al., 2017|doi.org/10.1016/j.pestbp.2016.08.009 |+^CYP425A1|Laodelphax striatellus|etofenprox|  |Sun et al., 2017|doi.org/10.1016/j.pestbp.2016.08.009|  
 +^CYP425A1|Nilaparvata lugens|etofenprox|  |Zhang et al., 2026|/doi.org/10.1021/acs.est.5c11107|
 ^CYP427A1|Nilaparvata lugens|no effect on chlorpyrifos tox| |Zhang et al., 2023|doi.org/10.1021/acs.jafc.2c08957| ^CYP427A1|Nilaparvata lugens|no effect on chlorpyrifos tox| |Zhang et al., 2023|doi.org/10.1021/acs.jafc.2c08957|
 ^CYP439A1|Nilaparvata lugens|chlorpyrifos and imidacloprid mix|  |Xu et al., 2020|doi.org/10.1016/j.aspen.2019.10.017| ^CYP439A1|Nilaparvata lugens|chlorpyrifos and imidacloprid mix|  |Xu et al., 2020|doi.org/10.1016/j.aspen.2019.10.017|
Line 595: Line 603:
 ^CYP315A1|Lasioderma serricorne (beetle)|   |lower ecdysteroid titer, impaired development |Yan et al., 2023|10.1127/entomologia/2023/2033| ^CYP315A1|Lasioderma serricorne (beetle)|   |lower ecdysteroid titer, impaired development |Yan et al., 2023|10.1127/entomologia/2023/2033|
 ^CYP315A1|Aedes albopictus| |high mortality when fed RNAi-expressing algae |Deng et al., 2025|doi.org/10.3390/insects16101033| ^CYP315A1|Aedes albopictus| |high mortality when fed RNAi-expressing algae |Deng et al., 2025|doi.org/10.3390/insects16101033|
 +^CYP315A1|Macrobrachium nipponense|  |lower frequency of molting,inhibition of ovarian development |Jiang et al., 2025|doi.org/10.1016/j.aqrep.2025.102700|
 ^CYP333A29|Hyphantria cunea|β-cypermethrin + Cd|  |Niu et al.,2025|doi.org/10.1021/acs.jafc.5c03132| ^CYP333A29|Hyphantria cunea|β-cypermethrin + Cd|  |Niu et al.,2025|doi.org/10.1021/acs.jafc.5c03132|
 ^CYP333A36|Glyphodes pyloalis|tolfenpyrad|  |Pan et al., 2023|doi.org/10.1016/j.pestbp.2023.105503| ^CYP333A36|Glyphodes pyloalis|tolfenpyrad|  |Pan et al., 2023|doi.org/10.1016/j.pestbp.2023.105503|
Line 610: Line 619:
 ^CYP4D ? (called CYP4D2)|Phortica okadai|β-cypermethrin|  |Wang et al., 2022|doi.org/10.3390/genes13122338| ^CYP4D ? (called CYP4D2)|Phortica okadai|β-cypermethrin|  |Wang et al., 2022|doi.org/10.3390/genes13122338|
 ^PP582172, a CYP370C|Macrobrachium nipponense (Decapod shrimp)|  |decrease in ovarian development, no effect on molting |Zhang et al., 2024|doi.org/10.3390/ijms25137318|  ^PP582172, a CYP370C|Macrobrachium nipponense (Decapod shrimp)|  |decrease in ovarian development, no effect on molting |Zhang et al., 2024|doi.org/10.3390/ijms25137318| 
- 
  
 </searchtable> </searchtable>
  
effects_of_p450_knockdown_by_rnai.txt · Last modified: by renefeyereisen