effects_of_p450_knockdown_by_rnai
Effects of P450 knockdown by RNAi
The results in the table below should be interpreted with caution in the absence of independent confirmation such as in vitro activity, transgenic expression or CRISPR/Cas9 knockout. RNAi is not equally effective in all arthropod species. The effects on pesticide toxicity also need to be carefully evaluated with attention to toxicity levels in controls, levels of target gene transcript after RNAi, and significance of changes (marginal effects ?). In some cases (e.g. CYP4G RNAi) the effects of RNAi on toxicity may be indirect, e.g. through changes in toxicant penetration through the cuticle. Careful analysis of the cited references is therefore needed before any conclusions can be drawn: Caveat emptor.
P450 | species | increased toxicity | other phenotype | reference | doi | |
---|---|---|---|---|---|---|
CYP2 clan | ||||||
CYP15A1 | Schistocerca gregaria | decrease in spontaneous and FA-stimulated JH III synthesis, accumulation of MF in the CA | Marchal et al., 2011 | doi.org/10.1016/j.ibmb.2010.12.007 | ||
CYP15A1 | Tribolium castaneum | no precocious pupation when injected in 3rd, 4th or 5th larval stages | Minakuchi et al., 2015 | doi.org/10.1016/j.jinsphys.2015.04.008 | ||
CYP15A1 | Anthonomus grandis | no effect | Vasquez et al., 2023 | doi.org/10.3389/fmolb.2023.1073721 | ||
CYP15C1 | Chilo suppressalis | delayed development, increased mortality | Sun et al., 2020 | doi.org/10.1002/PS.5789 | ||
CYP15F1 | Reticulitermes flavipes | decrease in presoldier formation | Tarver et al., 2012 | doi.org/10.1002/arch.21030 | ||
CYP18A1 | Drosophila melanogaster | lethality at pupal stage, also for phm-driven (PG), see paper. | Guittard et al.,2011 | doi.org/10.1016/j.ydbio.2010.09.023 | ||
CYP18A1 | Aethina tumida | defects at adult emergence | Wu et al., 2022 | doi.org/10.1002/ps.7146 | ||
CYP18A1 | Bemisia tabaci MEAM1 | lower survival of nymphs | Luan et al., 2013 | doi.org/10.1016/j.ibmb.2013.05.012 | ||
CYP18A1 | Bemisia tabaci MED | marginal effects on development, see also other genes in that paper | Liu et al., 2020 | doi.org/10.1016/j.pestbp.2020.104602 | ||
CYP18A1 | Henosepilachna vigintioctopunctata (Coleoptera) | disruption of pupation and adult emergence | Zhang et al. 2024 | doi.org/10.1002/arch.22111 | ||
CYP18A1 | Solenopsis invicta | no effect of flonicamid (in queens) | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.4c08903 | ||
CYP303A1 | Drosophila melanogaster | eclosion lethality | Wu et al., 2019 | doi.org/10.1016/j.ibmb.2019.103210 | ||
CYP303A1 | Locusta migratoria | malathion, chlorpyrifos, deltamethrin, carbaryl | lethal - molting/ecdysis disrupted,lower desication tolerance, modified CHC profile | Wu et al, 2020 | doi.org/10.1016/j.pestbp.2020.104637 | |
CYP303A1 | Apis cerana | thiamethoxam, dichlorvos, paraquat, deltamethrin | Zhang et al., 2019 | doi: 10.3389/fgene.2019.01000 | ||
CYP303A1 | Nilaparvata lugens | lethal molting defects,reduced ecdysteroid levels and signaling, not reversible by 20E | Wu et al., 2024 | doi.org/10.1016/j.ijbiomac.2024.136234 | ||
CYP303A1 | Nilaparvata lugens | increased mortality, molting defects,chitin metabolism genes expression altered | Du et al., 2024 | doi.org/10.1002/ps.8479 | ||
CYP305B1 (wrongly called CYP316) ON110138 | Ectropis oblique (Lepidoptera: Geometridae) | deltamethrin, fenpropathrin, chlorpyrifos | Peng et al., 2022 | doi.org/10.3390/genes13071141 | ||
CYP305E1 (wrongly called CYP305A1) | Aphis gossypii | slight decrease in venom protease gene expression | Li et al., 2019 | doi.org/10.1093/jee/toz021 | ||
CYP305H1 (wrongly called CYP305A1) | Bemisia tabaci (MEAM1) | thiamethoxam | Zhou et al., 2024 | doi.org/10.3390/insects15060399 | ||
CYP306A1 | Schistocerca gregaria | decreases 20E titer, no effect on molting | Marchal et al. 2011 | doi.org/10.1016/j.jinsphys.2011.05.009 | ||
CYP306A1 | Tribolium castaneum | reduced ecdysteroid titer and defective development | Hentze et al., 2013 | doi:10.1371/journal.pone.0055131.g005 | ||
CYP306A1 | Sogatella furcifera | decrease in 20E titer, lethality and delayed development | Wan et al., 2014 | doi.org/10.1016/j.gene.2014.07.023 | ||
CYP306A1 | Laodelphax striatellus | decrease in 20E titer, lethality and delayed development | Jia et al., 2015 | doi.org/10.1111/1744-7917.12147 | ||
CYP306A1 | Apis cerana | thiamethoxam, dichlorvos, paraquat, deltamethrin | Zhang et al., 2019 | doi: 10.3389/fgene.2019.01000 | ||
CYP306A1 | Locusta migratoria | little molting failure L3 to L4 | Zhang et al., 2022 | doi.org/10.1111/1744-7917.12907 | ||
CYP306A1 | Chilo suppressalis | increased toxicity of rice and vetiver grass feeding | reduced pupation % and pupal weight | Lu et al., 2022 | doi.org/10.1016/j.ijbiomac.2022.11.087 | |
CYP306A1 | Chilo suppressalis | decreased larval survival, longer developmental time, lower 20E titer | Shazad et al., 2022 | doi.org/10.3390/insects13080731 | ||
CYP306A1 | Macrobrachium nipponense (Decapoda) | reduced 20E titer, reduced molting frequency | Pan et al., 2022 | doi.org/10.1016/j.aqrep.2022.101009 | ||
CYP306A1 | Schistocerca gregaria | NO effect on the development and shape of growing oocytes in adult females, or on the shape (length/width ratio) of the deposited eggs. Oviposition and hatching success were NOT negatively affected | Schellens et al., 2022 | doi.org/10.3390/ijms23169232 | ||
CYP306A1 | Bemisia tabaci | imidacloprid | Liu et al.,2023 | doi.org/10.1002/ps.7569 | ||
CYP306A1 | Lasioderma serricorne (beetle) | lower ecdysteroid titer, impaired development | Yan et al., 2023[ 10.1127/entomologia/2023/2033 | |||
CYP307A2 | Tribolium castaneum | reduced ecdysteroid titer and defective development | Hentze et al., 2013 | doi:10.1371/journal.pone.0055131.g005 | ||
CYP307A2 (wrongly called CYP307A1) | Anopheles gambiae | reduced ecdysteroid production by ovaries | Pondeville et al., 2013 | doi.org/10.1371/journal.pone.0079861 | ||
CYP307 (called 307A1) | Sitobion avenae | imidacloprid | Zhang et al., 2020 | doi.org/10.1016/j.cropro.2019.105014 | ||
CYP307A2 | Schistocerca gregaria | decreases 20E titer, no effect on molting, but see Sugahara et al., 2017 | Marchal et al. 2011 | doi.org/10.1016/j.jinsphys.2011.05.009 | ||
CYP307A2 | Schistocerca gregaria | decreases 20E titer, multiple effects including precocious metamorphosis, compare with Marchal et al., 2011 | Sugahara et al. 2017 | doi.org/10.1016/j.ydbio.2017.07.007 | ||
CYP307A2 | Schistocerca gregaria | effect on the development and shape of growing oocytes in adult females, and on the shape (length/width ratio) of the deposited eggs. Oviposition and hatching success were negatively affected | Schellens et al., 2022 | doi.org/10.3390/ijms23169232 | ||
CYP307A2 | Locusta migratoria | molting delay and molting failure | Zhang et al., 2022 | doi.org/10.1111/1744-7917.12907 | ||
CYP307A2(wrongly called CYP307A1) | Aethina tumida | lethal at metamorphosis, downregulates 20E titer | Wu et al., 2022 | doi.org/10.1002/ps.7146 | ||
CYP307A2 | Drosophila melanogaster | molting arrest at L1, decreased ecdysteroid titer | Ono et al., 2012 | doi.org/10.1016/j.bbrc.2012.04.045 | ||
CYP307A2 | Drosophila melanogaster | death at L3 molt | Saito et al., 2016 | doi.org/10.1016/j.jinsphys.2016.09.012 | ||
CYP307A2 | Helicoverpa armigera | marginal effect on survival +/- 2-tridecanone | Zhang et al., 2016 | doi.org/10.1186/s12864-016-3277-y | ||
CYP307A2 | Locusta migratoria | molting delay and failure | Zhang et al.,2022 | doi.org/10.1111/1744-7917.12907. | ||
CYP307A2 (wrongly called 307A1) | Spodoptera litura | lower ecdysone (?) titer in pupal heads, lower chitin synthase A expression | Gong et al., 2022 | doi.org/10.1016/j.ecoenv.2022.113425 | ||
CYP307A2 (wrongly called 307A1) | Lasioderma serricorne (beetle) | lower ecdysteroid titer, impaired development | Yan et al., 2023[ 10.1127/entomologia/2023/2033 | |||
CYP307 | Portunus trituberculatus (Decapoda) | no effect on 20E titer over 4 days p.i. | Xie et al., 2016 | doi.org/10.1016/j.cbpa.2016.06.001 | ||
CYP307 | Macrobrachium nipponense (Decapoda) | reduced 20E titer, reduced molting frequency | Yuan et al., 2021 | doi.org/10.1016/j. jsbmb.2021.105976 | ||
CYP307B1 | Tribolium castaneum | no effect on larval development | Hentze et al., 2013 | doi:10.1371/journal.pone.0055131.g005 | ||
CYP307B1 | Lygus hesperus | indirect evidence of reduced 20E titer, no adult eclosion, nymphal-like appearance, increased mortality | Van Eckert et al., 2016 | doi.org/10.1111/imb.12242 | ||
CYP307B1 | Nilaparvata lugens | lower 20E titer, developmental arrest, ovarian growth arrest | Zhou et al., 2020 | doi.org/10.1016/j.ibmb.2020.103428 | ||
CYP307 | Diaphorina citri | reduced 20E titer, lower survivorship | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105361 | ||
CYP307 | Sogatella furcifera | lethality and delayed development | Jia et al., 2013 | doi.org/10.1186/1471-2199-14-19 | ||
CYP307 | Laodelphax striatellus | lethality and delayed development | Jia et al., 2015 | doi.org/10.1111/1744-7917.12087 | ||
CYP307 | Tetranychus urticae | decrease in oviposition | Wang et al., 2023 | doi.org/10.3390/ijms241914797 | ||
CYP369B3 | Meteorus pulchricornis (Hymenoptera: Braconidae) | phoxim, chlorfenapyr, cypermethrin | Xing et al., 2021 | doi.org/10.3390/insects12070651 | ||
CYP392A1 | Tetranychus cinnabarinus | cyflumetofen | Feng et al., 2023 | doi.org/10.1111/1744-7917.13151 | ||
CYP392A11 | Tetranychus urticae | abamectin | Xu et al., 2021 | doi.org/10.1002/ps.6130 | ||
CYP392A12 | Tetranychus urticae | abamectin | Xu et al., 2021 | doi.org/10.1002/ps.6130 | ||
CYP392A16 | Tetranychus urticae | abamectin | Papapostolou et al., 2022 | doi.org/10.1016/j.ibmb.2021.103709 | ||
CYP392A26 | Tetranychus cinnabarinus | fenpropathrin | Shi et al., 2016 | doi.org/10.1111/imb.12251 | ||
CYP392A28 | Tetranychus cinnabarinus | fenpropathrin | Shi et al., 2016 | doi.org/10.1111/imb.12251 | ||
CYP392D8 | Tetranychus urticae | abamectin | Xu et al., 2021 | doi.org/10.1002/ps.6130 | ||
CYP392D11 | Tetranychus cinnabarius | fenpropathrin | Shi et al., 2016 | doi.org/10.1111/imb.12251 | ||
CYP3 clan | ||||||
CYP6A9, 6A19, 6A20, 6A22 | Drosophila melanogaster | no effect on deltamethrin tox. | Duneau et al., 2018 | doi.org/10.1534/g3.118.200537 | ||
CYP6A23 | Drosophila melanogaster | deltamethrin | Duneau et al., 2018 | doi.org/10.1534/g3.118.200537 | ||
CYP6B6 | Helicoverpa armigera | increased mortality | Zhang et al., 2013 | doi.org/10.1017/S0007485313000151 | ||
CYP6B6 | Helicoverpa armigera | chlorpyrifos, bifenthrin, cyfluthrin | Zhao et al., 2016 | find | ||
CYP6B7 | Helicoverpa armigera | fenvalerate | Tang et al., 2016 | doi.org/10.1002/ps.3336 | ||
CYP6B50 | Spodoptera litura | xanthotoxin | Lu et al., 2019 | doi.org/10.1016/j.pestbp.2019.06.004 | ||
CYP6B53 | Lymantria dispar | larval feeding inhibited, delayed growth lower when dsRNA transgenically expressed in poplar host | Sun et al., 2022 | doi.org/10.1111/aab.12752 | ||
CYP6G1 | Drosophila melanogaster | imidacloprid,thiamethoxam, NOT fipronil | Shah et al., 2011 | doi.org/ 10.1002/ps.2218 | ||
CYP6G1 | Drosophila melanogaster | DDT | Gellatly et al., 2015 | doi.org/10.1016/j.pestbp.2015.01.001 | ||
CYP6G1 | Drosophila melanogaster | DDT | Kim et al., 2018 | doi.org/10.1016/j.pestbp.2018.03.003 | ||
CYP6H1 | Schistocerca gregaria | no effect on E/20E ratio in hemolymph, no effect on molting | Marchal et al. 2012 | doi.org/10.1016/j.jinsphys.2012.03.013 | ||
CYP6K1 | Blattella germanica | deltamethrin | Tseng et al., 2024 | doi.org/10.1093/jee/toae057 | ||
CYP6P3v1 | Anopheles sinensis | deltamethrin | Guo et al., 2024 | doi.org/10.1016/j.actatropica.2024.107413 | ||
CYP6P3v2 | Anopheles sinensis | deltamethrin | Guo et al., 2024 | doi.org/10.1016/j.actatropica.2024.107413 | ||
CYP6P9a | Anopheles funestus | clothianidin | lower tox of chlorfenapyr | Tchouakui et al., 2024 | doi.org/10.1016/j.celrep.2024.114566 | |
CYP6P14 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP6T3 | Drosophila melanogaster | low 20E titer and developmental defects but see Shimell & O’Connor 2022 | Ou et al., 2011 | doi.org/10.1371/journal.pbio.1001160 | ||
CYP6T3 | Drosophila melanogaster | death at L2/L3 molt or L2 precocious metamorphosis but see Shimell & O’Connor 2022 | Saito et al., 2016 | doi.org/10.1016/j.jinsphys.2016.09.012 | ||
CYP6AA5 | Aedes aegypti | cypermethrin (adults and larvae) | Soumalia Issa et al., 2024 | doi.org/10.1002/arch.70013 | ||
CYP6AB12 | Spodoptera litura | b-cypermethrin | Lu et al., 2019 | doi.org/10.1016/j.pestbp.2019.07.010 | ||
CYP6AA9 | Culex pipiens pallens | deltamethrin | Lv et al., 2016 | doi.org/10.1007/s00438-015-1109-4 | ||
CYP6AB12 | Spodoptera litura | λ-cyhalothrin | Lu et al., 2020 | doi.org/10.1016/j.jhazmat.2019.121698 | ||
CYP6AB12 | Spodoptera litura | gossypol reduced weight gain | Zhao et al., 2022 | doi.org/10.1016/j.pestbp.2022.105284 | ||
CYP6AB12 | Spodoptera litura | cyantraniliprole | Li et al., 2023 | doi.org/10.1021/acs.jafc.3c04865 | ||
CYP6AB14 | Spodoptera exigua | deltamethrin, gossypol, deltamethrin + gossypol | Hafeez et al., 2019 | doi:10.3390/ijms20092248 | ||
CYP6AB14 | Spodoptera litura | xanthotoxin, flavone, coumarin | toxicity, weigth gain, pupal weight | Wang et al., 2015 | doi.org/10.1016/j.jinsphys.2015.02.013 | |
CYP6AB51 (?)QZK27674.1 | Conogethes punctiferalis (Pyraloidea, Crambidae) | chlorantraniliprole, emamectin benzoate, λ-cyhalothrin | Yuan et al., 2023 | doi: 10.3389/fphys.2023.1186804 | ||
CYP6AB59 | Spodoptera litura | cyantraniliprole | Li et al., 2023 | doi.org/10.1021/acs.jafc.3c04865 | ||
CYP6AB60 | Spodoptera litura | tomatine, xanthotoxin, coumarin | only weigth gain | Sun et al., 2019 | doi.org/10.1016/j.pestbp.2018.12.006 | |
CYP6AB111 (wrongly called CYP6B7v1) | Lymantria dispar | emamectin benzoate | Xu et al., 2024 | doi.org/10.1016/j.pestbp.2023.105765 | ||
CYP6AB196 | Grapholita molesta (Tortricidae) | emamectin benzoate | Liu et al., 2023 | doi.org/10.3390/ijms242015435 | ||
CYP6AB (unnamed) | Scirpophaga incertulas (Crambidae) | growth impaired, larval mortality | Kola et al.,2016 | doi.org/10.3389/fphys.2016.00020 | ||
CYP6AE4 (called 6K1) | Bombyx mori | lower survival after Bt injection | Yi and Wu 2024 | doi.org/10.1016/j.ijbiomac.2024.136551 | ||
CYP6AE7 (called 9E2) | Bombyx mori | lower survival after Bt injection | Yi and Wu 2024 | doi.org/10.1016/j.ijbiomac.2024.136551 | ||
CYP6AE10 | Spodoptera exigua | λ-cyhalothrin, quercetin, λ-cyhalothrin+quercetin | Hafeez et al., 2020 | doi.org/10.1016/j.sjbs.2019.05.005 | ||
CYP6AE14 (17) | Helicoverpa armigera | deltamethrin | Tao et al., 2012 | doi.org/10.1111/j.1365-294X.2012.05548.x | ||
CYP6AE14 (17) | Helicoverpa armigera | reduced growth on gossypol containing diet | Mao et al., 2007 | doi.org/10.1038/nbt1352 | ||
CYP6AE14 (17) | Helicoverpa armigera | reduced growth on cotton | Mao et al., 2011 | doi.rog/10.1007/s11248-010-9450-1 | ||
CYP6AE14 | Helicoverpa armigera | reduced growth and pupation rate | Jin et al., 2015 | doi.org/10.1111/pbi.12355 | ||
CYP6AE43 | Spodoptera litura | β-cypermethrin, λ-cyhalothrin, fenvalerate | Xiao & Lu, 2022 | doi.org/10.1016/j.ijbiomac.2022.08.014 | ||
CYP6AE48 | Spodoptera litura | β-cypermethrin, λ-cyhalothrin and fenvalerate | Xiao & Lu, 2022 | doi.org/10.1016/j.ijbiomac.2022.08.014 | ||
CYP6AE68 | Spodoptera litura | indoxacarb | Hou et al., 2021 | doi.org/10.1016/j.pestbp.2021.104946 | ||
CYP6AE178 | Hyphantria cunea | coumarin | lower survival on 3 out of 7 tested host plants | Li et al., 2024 | doi.org/10.1016/j.pestbp.2024.106194 | |
CYP6AN4 | Spodoptera litura | cyantraniliprole | Li et al., 2023 | doi.org/10.1021/acs.jafc.3c04865 | ||
CYP6AQ83 | Solenopsis invicta | flonicamid (in queens) | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.4c08903 | ||
CYP6AS3 (wrongly called CYP6A13) | Apis cerana | thiamethoxam | Lei et al., 2024 | doi.org/10.1016/j.pestbp.2024.105890 | ||
CYP6AS8 | Apis mellifera | decreased 10-HDA levels in heads (from mandibular glands) | Wu et al., 2020 | doi.org/10.1007/s13592-019-00709-5 | ||
CYP6AS160 | Solenopsis invicta | fipronil | Zhang et al., 2021 | doi.org/10.1017/S0007485321000651 | ||
CYP6AS161 (wrongly called CYP6A14) | Solenopsis invicta | flonicamid | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105651 | ||
CYP6AX1v2 | Nilaparvata lugens | b-asarone | Xu et al., 2021 | doi.org/10.1016/j.ijbiomac.2020.12.217 | ||
CYP6AY1v2 | Nilaparvata lugens | chlorpyrifos, imidacloprid mix | Xu et al., 2020 | |||
CYP6AY1 | Nilaparvata lugens | imidacloprid | Ding et al., 2013 | doi.org/10.1016/j.ibmb.2013.08.005 | ||
CYP6AY1 | Nilaparvata lugens | imidacloprid | Bao et al., 2016 | doi.org/10.1016/j.pestbp.2015.10.020 | ||
CYP6AY1 | Nilaparvata lugens | imidacloprid | Zhang et al., 2016 | doi.org/10.1016/j.ibmb.2016.10.009 | ||
CYP6BB4 | Culex pipens pallens | deltamethrin | Zou et al., 2019 | doi.org/10.1111/imb.12571 | ||
CYP6BD12 | Nilaparvata lugens | decreases tox of chlorpyrifos | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP6BE1 (wrongly called CYP6K1) | Apis cerana | abamectin, imidacloprid | Tan et al., 2023 | doi.org/10.1016/j.pestbp.2023.105377 | ||
CYP6BG1 | Plutella xylostella | permethrin | Bautista et al., 2009 | |||
CYP6BG1 | Plutella xylostella | chlorantraniliprole, b-cypermethrin ? | Li et al., 2018 | |||
CYP6BH5 | Phaedon cochleriae (mustard lef beetle) | reduced chrysomelidial level in defenseive secretion | Fu et al., 2019 | doi.org/10.1016/j.ibmb.2019.103212 | ||
CYP6BJ1v1 | Leptinotarsa decemlineata | imidacloprid, potato leaf extract | Kalsi et al., 2017 | doi.org/10.1016/j.ibmb.2017.02.002 | ||
CYP6BQ7 | Tribolium castaneum | artemisia essential oil | Zhang et al., 2021 | |||
CYP6BQ8 | Tribolium castaneum | terpinen-4-ol | Gao et al., 2023 | doi.org/10.1017/S0007485322000566 | ||
CYP6BQ9 | Leptinotarsa decemlineata | deltamethrin | Zhu et al., 2010 | |||
CYP6BQ11 | Tribolium castaneum | dichlorvos, (marginal effect on carbofuran) | Xiong et al., 2020 | doi.org/10.1002/ps.5384 | ||
CYP6BY3 | Culex quinquefasciatus | no effect on permethrin toxicity | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP6BZ2 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP6CM1 | Bemisia tabaci | nicotine, imidacloprid | high toxicity of dsRNA | Li et al., 2015 | doi.org/10.1002/ps.3903 | |
CYP6CR2 | Dendroctonus armandi | terpenoids | Liu et al.,2022 | doi.org/10.1016/j.pestbp.2022.105180 | ||
CYP6CS1 | Nilaparvata lugens | pymetrozine | Wang et al., 2021 | doi.org/10.1002/ps.6438 | ||
CYP6CS1 | Nilaparvata lugens | no effect onchlorpyrifos tox | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP6CS3 | Sogatella furcifera | chlorpyrifos | Ruan et al., 2021 | doi.org/10.3390/biology10080795 | ||
CYP6CV1 (?)QZK27660.1 | Conogethes punctiferalis (Pyraloidea, Crambidae) | chlorantraniliprole, emamection benzoate, λ-cyhalothrin | Yuan et al., 2023 | doi: 10.3389/fphys.2023.1186804 | ||
CYP6CV5 | Chilo suppressalis | chlorantraniliprole | Xu et al, 2018 | doi.org/10.1002/ps.5171 | ||
CYP6CW1 | Laodelphax striatellus | buprofezin, pymetrozine | Zhang et al., 2017 | |||
CYP6CW1 | Nilaparvata lugens | imidacloprid | Zhang et al., 2016 | doi.org/10.1016/j.ibmb.2016.10.009 | ||
CYP6CW3v2 | Laodelphax striatellus | ethiprole | Elsaki et al., 2015 | |||
CYP6CX2 | Bemisia tabaci | thiamethoxam | Yang et al., 2023 JEE | doi.org/10.1093/jee/toad089 | ||
CYP6CX3 | Bemisia tabaci | cyantraniliprole | Zhang et al., 2022 | doi.org/10.1021/acs.jafc.2c04699 | ||
CYP6CX3 | Bemisia tabaci | thiamethoxam | Yang et al., 2023 JEE | doi.org/10.1093/jee/toad089 | ||
CYP6CX4 | Bemisia tabaci | flupyradifurone, imidacloprid | Wang et al., 2020 | |||
CYP6CX4 | Bemisia tabaci | flupyradifurone | Wang et al., 2024 | doii.org/10.1016/j.ijbiomac.2024.131056 | ||
CYP6CY3 | Aphis gossypii | imidacloprid | Wei et al., 2021 | doi.org/10.1016/j.pestbp.2021.104878 | ||
CYP6CY5 | Aphis gossypii | cyantraniliprole | Ding et al., 2023 | doi.org/10.1016/j.ijbiomac.2023.126824 | ||
CYP6CY7 | Aphis gossypii | spirotetramat | Peng et al.,2022 | doi.org/10.1002/ps.6818 | ||
CYP6CY7 | Aphis glycines | imidacloprid | Li et al., 2024 | doi.org/10.3390/insects15030188 | ||
CYP6CY9 | Aphis gossypii | thiamethoxam, imidacloprid | Lv et al., 2022 | doi.org/10.1021/acs.jafc.2c04867 | ||
CYP6CY9 | Aphis gossypii | cyantraniliprole | Ding et al., 2023 | doi.org/10.1016/j.ijbiomac.2023.126824 | ||
CYP6CY13 | Aphis gossypii | sulfoxaflor | Ma et al., 2019 | doi.org/10.1016/j.pestbp.2019.03.021 | ||
CYP6CY14 | Aphis gossypii | dinotefuran | Chen et al., 2020 | doi.org/10.1016/j.pestbp.2020.104601 | ||
CYP6CY14 | Aphis gossypii | acetamiprid | Ullah et al. 2020 | doi.org/10.1016/j.pestbp.2020.104687 | ||
CYP6CY14 | Aphis gossypii | clothianidin | Ullah et al. 2023 | doi.org/ 10.1127/entomologia/2023/2002 | ||
CYP6CY19 | Aphis gossypii | sulfoxaflor | Ma et al., 2019 | doi.org/10.1016/j.pestbp.2019.03.021 | ||
CYP6CY19 | Aphis gossypii | increases mortality and reduces fecundity in cotton and cucumber-specialized aphids | Gao et al., 2022 | doi.org/10.1021/acs.jafc.2c05403 | ||
CYP6CY21 | Aphis gossypii | spirotetramat | Peng et al.,2022 | doi.org/10.1002/ps.6818 | ||
CYP6CY22 | Aphis gossypii | dinotefuran | Chen et al., 2020 | doi.org/10.1016/j.pestbp.2020.104601 | ||
CYP6CY22 | Aphis gossypii | thiamethoxam, imidacloprid | Lv et al., 2022 | doi.org/10.1021/acs.jafc.2c04867 | ||
CYP6CY22 | Aphis gossypii | cyantraniliprole | Ding et al., 2024 | doi.org/10.1021/acs.jafc.3c08770 | ||
CYP6CZ1 | Aphis gossypii | acetamiprid | Ullah et al. 2020 | doi.org/10.1016/j.pestbp.2020.104687 | ||
CYP6CZ1 | Aphis gossypii | thiamethoxam, imidacloprid | Lv et al., 2022 | doi.org/10.1021/acs.jafc.2c04867 | ||
CYP6DA1 | Aphis gossypii | cyantraniliprole | Ding et al., 2023 | doi.org/10.1016/j.ijbiomac.2023.126824 | ||
CYP6DA2 (wrongly called CYP6A2) | Aphis gossypii | a- cypermethrin, spirotetramat | Peng et al., 2016 | doi.org/10.1016/j.pestbp.2015.07.008 | ||
CYP6DB1 | Aphis gossypii | thiamethoxam, imidacloprid | Lv et al., 2022 | doi.org/10.1021/acs.jafc.2c04867 | ||
CYP6DB3 | Bemisia tabaci Q | imidacloprid, thiamethoxam | Wei et al., 2023 | doi.org/10.1016/j.pestbp.2023.105468 | ||
CYP6DC1 | Aphis gossypii | acetamiprid | Ullah et al. 2023 | doi.org/ 10.1127/entomologia/2023/2002 | ||
CYP6DC1 | Rhopalosiphum padi | λ-cyhalothrin | Wang et al., 2022 | doi.org/10.1016/j.pestbp.2022.105088 | ||
CYP6DE5 | Dendroctonus armandi | terpenoids | Liu et al.,2022 | doi.org/10.1016/j.pestbp.2022.105180 | ||
CYP6DF1 | Dendroctonus armandi | (+)-a-pinene | Liu & Chen,2022 | doi.org/10.1016/j.pestbp.2022.105270 | ||
CYP6DJ2 | Dendroctonus armandi | (+)-a-pinene | Liu & Chen,2022 | doi.org/10.1016/j.pestbp.2022.105270 | ||
CYP6DW3 | Bemisia tabaci | afidopyropen | Ma et al.2024 | doi.org/10.1016/j.jia.2024.07.027 | ||
CYP6DW4 | Bemisia tabaci | dimpropyridaz | Tang et al.2024 | doi.org/10.1016/j.pestbp.2024.105888 | ||
CYP6EM1 | Bemisia tabaci | dinetofuran | Huang et al.2024 | doi.org/10.1021/acs.jafc.3c06953 | ||
CYP6ER1 | Nilaparvata lugens | Pang et al., 2016 | ||||
CYP6ER1 | Nilaparvata lugens | imidacloprid | Bao et al., 2016 | doi.org/10.1016/j.pestbp.2015.10.020 | ||
CYP6ER1 | Nilaparvata lugens | sulfoxaflor | Liao et al., 2018 | find | ||
CYP6ER1 | Nilaparvata lugens | nitenpyram | Mao et al., 2019 | |||
CYP6ER1 | Nilaparvata lugens | imidacloprid, thiamethoxam, dinotefuran | Sun et al., 2018 | doi.org/10.1016/j.pestbp.2018.06.014 | ||
CYP6ER1 | Nilaparvata lugens | imidacloprid | Zhang et al., 2016 | doi.org/10.1016/j.ibmb.2016.10.009 | ||
CYP6ER1 | Nilaparvata lugens | imidacloprid | Yokoi et al., 2016 | doi.org/10.1002/ps.6200 | ||
CYP6ER1 | Nilaparvata lugens | imidacloprid | Cheng et al., 2021 | doi.org/10.1016/j.chemosphere.2020.128269 | ||
CYP6ER1 | Nilaparvata lugens | nitenpyram, imidacloprid | Zhang et al., 2024 | doi.org/10.1016/j.jare.2024.11.006 | ||
CYP6ER1vA | Nilaparvata lugens | imidacloprid,nitenpyram,cycloxaprid | Gong et al., 2023 | doi.org/10.1021/acs.jafc.3c03167 | ||
CYP6ER4 | Sogatella furcifera | chlorpyrifos | Ruan et al., 2021 | doi.org/10.3390/biology10080795 | ||
CYP6EX3 | Chironomus tentans | chlorpyriphos toxicity DECREASED | Tang et al., 2017 | doi.org/10.1016/j.chemosphere.2017.07.137 | ||
CYP6FD1? | Sogatella furcifera | sulfoxaflor | Wang et al., 2019 | doi.org/10.3390/ijms20184573 | ||
CYP6FD1 | Locusta migratoria | deltamethrin, NOT imidacloprid | Liu et al., 2023 | doi.org/10.1016/j.pestbp.2023.105627 | ||
CYP6FD2 | Locusta migratoria | carbaryl | Guo et al., 2016 | |||
CYP6FD3 | Locusta migratoria | NOT deltamethrin, NOT imidacloprid | Liu et al., 2023 | doi.org/10.1016/j.pestbp.2023.105627 | ||
CYP6FE1 | Locusta migratoria | imidacloprid, NOT deltamethrin | Liu et al., 2023 | doi.org/10.1016/j.pestbp.2023.105627 | ||
CYP6FE1 | Locusta migratoria | carbaryl | Guo et al., 2016 | |||
CYP6FF1 | Locusta migratoria | deltamethrin | Guo et al., 2016 | |||
CYP6FJ3 (wrongly called SF01) | Sogatella furcifera | triflumezopyrim | Gong et al., 2022 | doi.org/10.1016/j.ecoenv.2022.113575 | ||
CYP6FJ3 | Sogatella furcifera | pymetrozine | Gong et al., 2023 | doi.org/10.1021/acs.jafc.3c03617 | ||
CYP6FV12 | Bradysia odoriphaga | imidacloprid | Chen et al., 2019 | doi.org/10.1016/j.pestbp.2018.11.009 | ||
CYP6FV21 | Bradysia odoriphaga | imidacloprid,λ-cyhalothrin | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.3c08807 | ||
CYP6HC1 | Locusta migratoria | fluvalinate | Zhang et al., 2019 | doi.org/10.1016/j.chemosphere.2019.02.011 | ||
CYP6HL1 | Locusta migratoria | carbaryl, fluvalinate, cypermethrin | Zhang et al., 2019 | doi.org/10.1016/j.chemosphere.2019.02.011 | ||
CYP6HL1 | Locusta migratoria | NOT deltamethrin, NOT imidacloprid | Liu et al., 2023 | doi.org/10.1016/j.pestbp.2023.105627 | ||
CYP6HN1 | Locusta migratoria | carbaryl, fluvalinate, fenvalerate | Zhang et al., 2019 | doi.org/10.1016/j.chemosphere.2019.02.011 | ||
CYP6HQ1 | Locusta migratoria | carbaryl, fluvalinate | Zhang et al., 2019 | doi.org/10.1016/j.chemosphere.2019.02.011 | ||
CYP6MS1 | Sitophilus zeamais | terpinen-4-ol | Huang et al., 2020 | doi.org/10.1016/j.pestbp.2019.07.008 | ||
CYP6MS1 | Sitophilus zeamais | terpinen-4-ol, limonene | Zhao et al., 2023 | doi.org/10.1016/j.pestbp.2023.105426 | ||
CYP6MS5 | Sitophilus zeamais | terpinen-4-ol, limonene | Zhao et al., 2023 | doi.org/10.1016/j.pestbp.2023.105426 | ||
CYP6MS6 | Sitophilus zeamais | terpinen-4-ol, limonene | Zhao et al., 2023 | doi.org/10.1016/j.pestbp.2023.105426 | ||
CYP6MS8 | Sitophilus zeamais | terpinen-4-ol, limonene | Zhao et al., 2023 | doi.org/10.1016/j.pestbp.2023.105426 | ||
CYP6MS9 | Sitophilus zeamais | terpinen-4-ol, limonene | Zhao et al., 2023 | doi.org/10.1016/j.pestbp.2023.105426 | ||
CYP6MU1 | Locusta migratoria | NOT deltamethrin, NOT imidacloprid | Liu et al., 2023 | doi.org/10.1016/j.pestbp.2023.105627 | ||
CYP6MU1 | Locusta migratoria | decrease in antennal EAG response to trans-2-hexen-1-al, nonanal | Wu et al., 2023 | doi.org/10.1016/j.pestbp.2023.105620 | ||
CYP6QE1 | Bradysia odoriphaga | imidacloprid,λ-cyhalothrin | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.3c08807 | ||
CYP6SD3 | Lasioderma serricorne | ethyl formate, benzothiazole | Li et al., 2024 | doi.org/10.3389/fphys.2024.1503953 | ||
CYP6SN3 | Chilo suppressalis | increased toxicity of rice and vetiver grass feeding | reduced pupation % and pupal weight | Lu et al., 2022 | doi.org/10.1016/j.ijbiomac.2022.11.087 | |
CYP6SX1 | Bradysia odoriphaga | clothianidin | Zhang et al.,2022 | doi.org/10.1021/acs.jafc.2c01315 | ||
CYP6SX1 | Bradysia odoriphaga | imidacloprid, phoxim | Wang et al.,2022 | doi.org/10.1021/acs.jafc.4c00358 | ||
CYP6ABE1 | Glyphodes pyloalis (Lepidoptera: Pyralidae) | tolfenpyrad | Pan et al., 2023 PBP | |||
CYP6AEL1 | Lasioderma serricorne | ethyl formate, benzothiazole | Li et al., 2024 | doi.org/10.3389/fphys.2024.1503953 | ||
CYP9A3 | Locusta migratoria | deltamethrin, permethrin | Zhu et al., 2016 | doi.org/10.1016/j.pestbp.2016.01.001 | ||
CYP9A9 | Spodoptera exigua | lufenuron, methoxyfenozide | Zhang et al.,2023 | doi.org/10.1111/imb.12829 | ||
CYP9A10 | Spodoptera exigua | alpha-cypermethrin, xanthotoxin + alpha-cypermethrin | Hafeez et al., 2020 | doi.org/10.1016/j.pestbp.2019.07.003 | ||
CYP9A14 | Helicoverpa armigera | deltamethrin | Tao et al., 2012 | doi.org/10.1111/j.1365-294X.2012.05548.x | ||
CYP9A21v3 | Spodoptera exigua | chlorantraniliprole | Wang et al., 2018 | |||
CYP9A40 | Spodoptera litura | quercetin, cinnamic acid, deltamethrin, methoxyfenozide | Wang et al., 2015 | |||
CYP9A54 (wrongly called CYP9A23v1) | Lymantria dispar | emamectin benzoate | Xu et al., 2024 | doi.org/10.1016/j.pestbp.2023.105765 | ||
CYP9A58 | Spodoptera frugiperda | prolonged developmental time | He et al. 2023 | doi.org/10.1002/ps.7355 | ||
CYP9A68 | Chilo suppressalis | chlorantraniliprole | Xu et al, 2018 | doi.org/10.1002/ps.5171 | ||
CYP9A75 | Spodoptera frugiperda | tetraniliprole,emamectin benzoate | Wang et al., 2024 | doi.org/10.1017/S000748532300038X | ||
CYP9A98 | Spodoptera exigua | deltamethrin, deltamethrin + gossypol | Hafeez et al., 2019 | doi:10.3390/ijms20092248 | ||
CYP9A105 | Spodoptera exigua | a-cypermethrin, deltamethrin, fenvalerate | Wang et al., 2018 | doi.org/10.3390/ijms19030737 | ||
CYP9A120 | Cydia pomonella | λ-cyhalothrin | Li et al., 2022 | doi.org/10.1101/2022.07.22.501203 | ||
CYP9A121 | Cydia pomonella | λ-cyhalothrin | Li et al., 2022 | doi.org/10.1101/2022.07.22.501203 | ||
CYP9A157 (wrongly called CYP9A75a) | Spodoptera litura | cyantraniliprole, a-cypermethrin | Li et al., 2024 | doi.org/10.1021/acs.jafc.4c03069 | ||
CYP9A158 (wrongly called CYP9A75b) | Spodoptera litura | cyantraniliprole, a-cypermethrin | Li et al., 2024 | doi.org/10.1021/acs.jafc.4c04465 | ||
CYP9A209 | Grapholita molesta (Tortricidae) | emamectin benzoate | Liu et al., 2023 | doi.org/10.3390/ijms242015435 | ||
CYP9D5 (wrongly called CYP9E2) | Tribolium castaneum | effects on intermediary metabolism | Zhou et al., 2023 | doi.org/10.3390/agronomy13092263 | ||
CYP9J10 | Anopheles sinensis | deltamethrin | Guo et al., 2024 | doi.org/10.1016/j.actatropica.2024.107413 | ||
CYP9J32 | Aedes aegypti | permethrin (larvae) | Soumalia Issa et al., 2024 | doi.org/10.1002/arch.70013 | ||
CYP9J35 | Culex pipiens pallens | deltamethrin | Guo et al., 2017 | doi.org/10.1016/j.ibmb.2017.03.006 | ||
CYP9J35 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP9J45 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP9J57 | Bradysia odoriphaga | clothianidin | Zhang et al.,2022 | doi.org/10.1021/acs.jafc.2c01315 | ||
CYP9K1 | Anopheles sinensis | deltamethrin | Guo et al., 2024 | doi.org/10.1016/j.actatropica.2024.107413 | ||
CYP9M12 | Culex quinquefasciatus | malathion | Huang et al., 2023 | |||
CYP9Q1 | Apis mellifera | decreases sugar water consumption, sugar sensitivity (proboscis extension assay), tyrosine hydroxylase and IRS expression in the brain | Xu et al., 2024 | doi.org/10.3390/ijms252413550 | ||
CYP9Z5 (wrongly called CYP9F2) | Tribolium castaneum | lower resistance to CO2 stress | affects carbohydrate metabolism | Wang et al., 2024 | doi.org/10.3390/insects15070502 | |
CYP9Z6 | Tribolium castaneum | terpinen-4-ol | Gao et al., 2022 | doi.org/10.1016/j.pestbp.2022.105065 | ||
CYP9Z25 | Leptinotarsa decemlineata | imidacloprid, potato leaf extract | Kalsi et al., 2017 | doi.org/10.1016/j.ibmb.2017.02.002 | ||
CYP9Z26 | Leptinotarsa decemlineata | imidacloprid | Clements et al., 2017 | doi.org/10.1016/j.pestbp.2016.07.001 | ||
CYP9Z29 | Leptinotarsa decemlineata | imidacloprid, potato leaf extract | Kalsi et al., 2017 | doi.org/10.1016/j.ibmb.2017.02.002 | ||
CYP9Z140 | Leptinotarsa decemlineata | thiamethoxam | Wang et al., 2024 | doi.org/10.3390/insects15080559 | ||
CYP9AL1 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP9AQ1 | Locusta migratoria | fluvalinate | Zhu et al., 2016 | doi.org/10.1016/j.pestbp.2016.01.001 | ||
CYP9AQ2 | Locusta migratoria | deltamethrin | Guo et al., 2015 | doi.org/10.1016/j.pestbp.2015.01.003 | ||
CYP9AY1 | Leptinotarsa decemlineata | thiamethoxam | Wang et al., 2024 | doi.org/10.3390/insects15080559 | ||
CYP41G2 | Pardosa pseudoannulata | no phenotype reported | Hou et al.2021 | doi.org/10.1111/imb.12731 | ||
CYP321A7 | Spodoptera frugiperda | λ-cyhalothrin | Li et al. 2024 | doi.org/10.1016/j.pestbp.2024.106009 | ||
CYP321A7 | Spodoptera litura | λ-cyhalothrin | lower larval weight gain:flavone, xanthotoxin, curcumin | Xiao et al. 2024 | doi.org/10.1021/acs.jafc.3c05423 | |
CYP321A8 | Spodoptera frugiperda | chlorantraniliprole | Bai-Zhong et al. 2020 | doi.org/10.1093/jisesa/ieaa047 | ||
CYP321A8 | Spodoptera frugiperda | chlorpyrifos, deltamethrin | Chen et al. 2024 | doi.org/10.1111/1744-7917.13376 | ||
CYP321A8 | Spodoptera litura | λ-cyhalothrin | lower larval weight gain:flavone, xanthotoxin, curcumin | Xiao et al. 2024 | doi.org/10.1021/acs.jafc.3c05423 | |
CYP321A9 | Spodoptera frugiperda | chlorantraniliprole | Bai-Zhong et al. 2020 | doi.org/10.1093/jisesa/ieaa047 | ||
CYP321A9 | Spodoptera frugiperda | emamectin benzoate | Shi et al. 2023 | doi.org/10.1093/jee/toad168 | ||
CYP321A9 | Spodoptera frugiperda | ferulic acid,gramine,tricine | prolonged developmental time | He et al. 2023 | doi.org/10.1002/ps.7355 | |
CYP321A10 | Spodoptera litura | λ-cyhalothrin | lower larval weight gain:flavone, xanthotoxin | Xiao et al. 2024 | doi.org/10.1021/acs.jafc.3c05423 | |
CYP321A12 | Spodoptera litura | NOT λ-cyhalothrin | Xiao et al. 2024 | doi.org/10.1021/acs.jafc.3c05423 | ||
CYP321A15 | Spodoptera litura | NOT λ-cyhalothrin | lower larval weight gain:flavone, xanthotoxin | Xiao et al. 2024 | doi.org/10.1021/acs.jafc.3c05423 | |
CYP321A19 | Spodoptera litura | indoxacarb | Li et al., 2023 | doi.org/10.1016/j.jhazmat.2023.132605 | ||
CYP321B1 | Spodoptera frugiperda | chlorantraniliprole | Bai-Zhong et al. 2020 | doi.org/10.1093/jisesa/ieaa047 | ||
CYP321B1 | Spodoptera frugiperda | λ-cyhalothrin | Guo et al.,2024 | doi.org/10.1016/j.pestbp.2024.105916 | ||
CYP321B1 | Spodoptera litura | chlopyrifos, β-cypermethrin, NOT methomyl | Wang et al., 2017 | doi.org/10.1111/1744-7917.12315 | ||
CYP321B1 (wrongly called CYP6) | Spodoptera litura | cypermethrin, λ-cyhalothrin, NOT fenvalerate | Xu et al., 2020 | doi.org/10.1016/j.pestbp.2020.104649 | ||
CYP321B1 | Spodoptera litura | tannin (decreased weight gain) | Zhao et al., 2022 | doi.org/10.1016/j.ijbiomac.2021.11.144 | ||
CYP321E1 | Plutella xylostella | chlorantraniliprole | Xu et al, 2018 | doi.org/10.1002/ps.5171 | ||
CYP321F3 | Chilo suppressalis | chlorantraniliprole | Xu et al, 2018 | doi.org/10.1002/ps.5171 | ||
CYP324A12 | Chilo suppressalis | chlorantraniliprole | Xu et al, 2018 | doi.org/10.1002/ps.5171 | ||
CYP324A16 | Spodoptera litura | coumarin | Xia et al., 2023 | doi.org/10.3390/ijms241713177 | ||
CYP336A65 (wrongly called CYP9E2) | Solenopsis invicta | flonicamid | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105651 | ||
CYP336A66 | Solenopsis invicta | no effect of flonicamid (in queens) | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.4c08903 | ||
CYP332A1 | Spodoptera litura | cyantraniliprole | Li et al., 2023 | doi.org/10.1021/acs.jafc.3c04865 | ||
CYP337B5 | Spodoptera frugiperda | λ-cyhalothrin | Guo et al.,2024 | doi.org/10.1016/j.pestbp.2024.105916 | ||
CYP337B5 | Spodoptera frugiperda | chlorantraniliprole | Guo et al.,2024 | doi.org/10.1016/j.aspen.2024.102298 | ||
CYP345D2(wrongly called CYP6K1) | Tribolium castaneum | lower resistance to CO2 stress | affects carbohydrate metabolism | Wang et al., 2024 | doi.org/10.3390/insects15070502 | |
CYP346A1,A2 | Tribolium castaneum | no effect on phosphine toxicity | Wang et al., 2020 | doi.org/10.1016/j.pestbp.2020.104622 | ||
CYP346B1, B2, B3 | Tribolium castaneum | phosphine | Wang et al., 2020 | doi.org/10.1016/j.pestbp.2020.104622 | ||
CYP347W1 | Phaedon cochleariae (leaf beetle) | depletion in isoxazolin-5-one glucoside ester and increase in isoxazolin-5-one glucoside in the larval hemolymph (3-nitropropionic acid biosynthesis) | Fu et al., 2021 | doi.org/10.1111/1744-7917.12944 | ||
CYP384A1 | Tetranychus cinnabarius | fenpropathrin | Shi et al., 2016 | doi.org/10.1111/imb.12251 | ||
CYP402B2 (wrongly called CYP6K1) | Bemisia tabaci (MEAM1) | abamectin | Zhou et al., 2024 | doi.org/10.3390/insects15060399 | ||
CYP402C1 | Bemisia tabaci | imidacloprid | Guo et al.,2023 | doi.org/10.1111/1744-7917.13081 | ||
CYP408A1 | Nilaparvata lugens | ethofenprox, nitenpyram,imidacloprid | Yang et al., 2024 | doi.org/10.1016/j.pestbp.2024.105939 | ||
CYP408A3 | Sogatella furcifera | chlorpyrifos | Ruan et al., 2021 | doi.org/10.3390/biology10080795 | ||
CYP408B1 | Locusta migratoria | deltamethrin | Guo et al., 2012 | doi.org/10.1016/j.chemosphere.2011.12.061 | ||
CYP409A1 | Locusta migratoria | deltamethrin | Guo et al., 2012 | doi.org/10.1016/j.chemosphere.2011.12.061 | ||
CYP3107A10 (wrongly called CYP3A24) | Neoseiulus barkeri | chlorpyriphos (decreased toxicity) | Yu et al., 2024 | doi.org/10.1016/j.jhazmat.2024.135163 | ||
CYP3115A1 | Nilaparvata lugens | no effect on chlorpyrifos tox | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP3356A1 (HGT) | Bradysia odoriphaga | imidacloprid, thiamethoxam, β-cypermethrin | Chen et al., 2019 | doi.org/10.1002/ps.5208 | ||
CYP3653A1 | Frankliniella occidentalis | decreased larval survival | Han & Rotenberg, 2024 | doi.org/10.1111/1744-7917.13478 | ||
CYP3828A1 (HGT) | Bradysia odoriphaga | clothianidin | Zhang et al.,2024 | doi.org/10.1021/acs.jafc.2c01315 | ||
CYP3828A1 (HGT) | Bradysia odoriphaga | imidacloprid, phoxim | Wang et al.,2022 | doi.org/10.1021/acs.jafc.4c00358 | ||
CYP4174B1 (wrongly called CYP6A14X1) | Dastarcus helophoroides (Coleoptera) | λ-cyhalothrin | Zhang et al., 2023 | doi.org/10.1002/ps.7319 | ||
CYP4 clan | ||||||
CYP4C52v1 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP4C61 | Nilaparvata lugens | inhibits ability to feed on YHY51 (BPH-resistant) rice | Peng et al., 2017 | doi.org/10.3389/fphys.2017.00972 | ||
CYP4C61 | Nilaparvata lugens | decreased weight gain on diets with tricin, hesperetin,proquamezine or TN1 rice | Zhang et al., 2024 | doi.org/10.1016/j.jare.2024.11.006 | ||
CYP4C62 | Nilaparvata lugens | decreases tox of chlorpyrifos | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP4C64 | Bemisia tabaci | thiamethoxam | Yang et al., 2021 | doi.org/10.1126/sciadv.abe5903 | ||
CYP4C64 | Bemisia tabaci | afidopyropen | Ma et al.2024 | doi.org/10.1016/j.jia.2024.07.027 | ||
CYP4C67 | Diaphorina citri | imidacloprid | Killiny et al., 2014 | doi.org/10.1371/journal.pone.0110536 | ||
CYP4C68 | Diaphorina citri | imidacloprid | Killiny et al., 2014 | doi.org/10.1371/journal.pone.0110536 | ||
CYP4C76 | Nilaparvata lugens | decreased weight gain on diet with proquamezine | Zhang et al., 2024 | doi.org/10.1016/j.jare.2024.11.006 | ||
CYP4C78 | Nilaparvata lugens | decreased weight gain on diets with tricin, hesperetin,proquamezine or TN1 rice | Zhang et al., 2024 | doi.org/10.1016/j.jare.2024.11.006 | ||
CYP4D21 (wrongly called SXE1) | Drosophila melanogaster | decreased male courting and mating success | Fujii et al., 2008 | doi.org/10.1534/genetics.108.089177 | ||
CYP4D42v1 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP4E3 | Drosophila melanogaster | MT-RNAi(but not fat body RNAi): permethrin | increased ER oxidative stress in the MT | Terhzaz et al., 2015 | doi.org/10.1016/j.ibmb.2015.06.002 | |
CYP4G1 | Drosophila melanogaster | CHC biosynthesis inhibited, increased susceptibility to desiccation | Qiu et al., 2012 | doi.org/10.1073/pnas.1208650109 | ||
CYP4G1 | Drosophila melanogaster | DDT | Gellatly et al., 2015 | doi.org/10.1016/j.pestbp.2015.01.001 | ||
CYP4G1 | Drosophila melanogaster | DDT | Kim et al., 2018 | doi.org/10.1016/j.pestbp.2018.03.003 | ||
CYP4G19 | Blattella germanica | Chinese pyrethroid Jia Chong Qing | Guo et al., 2010 | doi.org/10.1155/2010/517534 | ||
CYP4G19 | Blattella germanica | beta-cypermethrin | Gao et al., 2023 | doi.org/10.1016/j.pestbp.2023.105703 | ||
CYP4G62 | Locusta migratoria | malathion, chlorpyriphos, deltamethrin, carbaryl | increased susceptibility to desiccation, decreased CHC levels | Wu et al., 2020 | doi.org/10.1002/ps.5914 | |
CYP4G68 | Bemisia tabaci | imidacloprid,thiamethoxam | Liang et al., 2022 | doi.org/10.3390/agriculture12040473 | ||
CYP4G74 | Spodoptera frugiperda | spinetoram,fipronil,thiamethoxam,λ-cyhalothrin,emamectin benzoate | Lu et al., 2024 | doi.org/10.1002/ps.8054 | ||
CYP4G100 | Bactrocera dorsalis | decrease in CHC levels, accumulation of triglycerides, increased water loss, higher desiccation susceptibility | Jin et al., 2022 | doi.org/10.1111/imb.12803 | ||
CYP4G102 | Locusta migratoria | malathion, chlorpyriphos, deltamethrin, carbaryl | increased susceptibility to desiccation, decreased CHC levels | Wu et al., 2020 | doi.org/10.1002/ps.5914 | |
CYP4G70 | Diaphorina citri | imidacloprid | Killiny et al., 2014 | doi.org/10.1371/journal.pone.0110536 | ||
CYP4G79 | Harmonia axyridis | lower CHC levels,effects on melanin spots | Zhang et al., 2021 | DOI.org/10.1127/entomologia/2020/0970 | ||
CYP4L12 (wrongly called CYP4L4) | Spodoptera litura | decreased response to sex pheromone | Feng et al., 2017 | doi.org/10.1111/imb.12307 | ||
CYP4P1 | Drosophila melanogaster | DDT | Seong et al.,2019 | doi.org/10.1016/j.pestbp.2019.06.008 | ||
CYP4P2 | Drosophila melanogaster | DDT | Seong et al.,2019 | doi.org/10.1016/j.pestbp.2019.06.008 | ||
CYP4Q3 | Leptinotarsa decemlineata | imidacloprid | Kaplanoglu et al., 2017 | doi.org/10.1038/s41598-017-01961-4 | ||
CYP4Q85 (wrongly called CYP4Q) | Dastarcus helophoroides (Coleoptera) | λ-cyhalothrin | Zhang et al., 2023 | doi.org/10.1002/ps.7319 | ||
CYP4S35 (wrongly called CYP4S4) | Lymantria dispar | emamectin benzoate | Xu et al., 2024 | doi.org/10.1016/j.pestbp.2023.105765 | ||
CYP4AA1 | Solenopsis invicta | flonicamid | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105651 | ||
CYP4BN6 | Tribolium castaneum | artemisia essential oil | Gao et al., 2020 | |||
CYP4BN6 | Tribolium castaneum | dichlorvos, (marginal effect on carbofuran) | Xiong et al., 2020 | doi.org/10.1002/ps.5384 | ||
CYP4BW9 (wrongly called CYP4C1) | Solenopsis invicta | flonicamid | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105651 | ||
CYP4CE1 | Nilaparvata lugens | imidacloprid | Zhang et al., 2016 | doi.org/10.1016/j.ibmb.2016.10.009 | ||
CYP4CE1 | Nilaparvata lugens | chlorpyrifos | Lu et al., 2021 | doi.org/10.1016/j.pestbp.2021.104800 | ||
CYP4CE1 | Nilaparvata lugens | chlorpyrifos | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP4CE1 | Nilaparvata lugens | nitenpyram, imidacloprid | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.3c02495 | ||
CYP4CE1 | Nilaparvata lugens | nitenpyram, imidacloprid | Zhang et al., 2024 | doi.org/10.1016/j.jare.2024.11.006 | ||
CYP4CJ1 | Aphis gossypii | spirotetramat | Peng et al.,2022 | doi.org/10.1002/ps.6818 | ||
CYP4CJ6 | Sitobion miscanthi | imidacloprid, thiamethoxam | Hu et al, 2022 | doi.org/10.1017/S0007485322000037 | ||
CYP4CK1 | Aphis gossypii | thiamethoxam, imidacloprid | Lv et al., 2022 | doi.org/10.1021/acs.jafc.2c04867 | ||
CYP4CK1 | Aphis gossypii | cyantraniliprole | Ding et al., 2023 | doi.org/10.1016/j.ijbiomac.2023.126824 | ||
CYP4CL2 | Panonychus citri | pyridaben | Pan et al., 2023 | doi.org/10.1021/acs.jafc.3c06921 | ||
CYP4CS5 | Bemisia tabaci | thiamethoxam, clothianidin | Hu et al.,2024 | |||
CYP4DB1 | Diaphorina citri | imidacloprid | Killiny et al., 2014 | doi.org/10.1371/journal.pone.0110536 | ||
CYP4DE1 | Nilaparvata lugens | chlorpyrifos and imidacloprid mix | Xu et al., 2020 | |||
CYP4DE1 | Laodelphax striatellus | ethiprole | Elzaki et al., 2015 | |||
CYP4EM1 | Rhodnius prolixus | deltamethrin | lower survival rate also in absence of insecticide | Paim et al., 2021 | doi.org/10.1111/imb.12737 | |
CYP4EM10 | Triatoma infestans | no effect on deltamethrin toxicity | Dulbecco et al., 2018 | doi.org/10.1038/s41598-018-28475-x | ||
CYP4EP4 | Varroa destructor | toxicity of coumaphos DECREASED | Vlogiannitis et al. 2021 | doi.org/10.1073/pnas.2020380118 | ||
CYP4FB2 | Nilaparvata lugens | chlorpyrifos | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP4FD2 | Sogatella furcifera | sulfoxaflor | Wang et al., 2019 | doi.org/10.3390/ijms20184573 | ||
CYP4NQ26 wrongly called CYP4BN4v7 | Callosobruchus maculatus | decrease in terminal oocyte length | Chen et al., 2024 | doi.org/10.1038/s41598-024-79866-2 | ||
CYP4PR1 | Triatoma infestans | deltamethrin | Dulbecco et al., 2021 | doi.org/10.1016/j.pestbp.2021.104781 | ||
CYP4ABT1 (wrongly called CYP4C1) | Dastarcus helophoroides (Coleoptera) | λ-cyhalothrin | Zhang et al., 2023 | doi.org/10.1002/ps.7319 | ||
CYP313A1 | Drosophila melanogaster | no effect on DDT toxicity | Seong et al.,2019 | doi.org/10.1016/j.pestbp.2019.06.008 | ||
CYP325G4 | Culex pipiens pallens | deltamethrin | Xu et al. 2024 | doi.org/10.1021/acs.jafc.4c05708 | ||
CYP325BB1 | Culex pipiens pallens | deltamethrin | Li et al., 2021 | doi.org/10.1186/s13071-021-05033-5 | ||
CYP325BC1 | Culex quinquefasciatus | malathion | Huang et al., 2023 | |||
CYP325BG1 | Culex pipiens | deltamethrin | Hong et al., 2014 | doi.org/10.1016/j.ibmb.2014.10.007 | ||
CYP325BG3 | Culex pipiens pallens | deltamethrin | Guo et al., 2017 | doi.org/10.1016/j.ibmb.2017.03.006 | ||
CYP325Y6 | Culex quinquefasciatus | permethrin | Yang et al., 2021 | doi.org/10.1038/s41598-021-88121-x | ||
CYP340G2 | Spodoptera litura | indoxacarb | Li et al., 2023 | doi.org/10.1016/j.jhazmat.2023.132605 | ||
CYP340L16 | Spodoptera frugiperda | tetraniliprole,spinetoram,emamectin benzoate | Wang et al., 2024 | doi.org/10.1017/S000748532300038X | ||
CYP340W1 | Plutella xylostella | abamectin | Gao et al., 2016 | doi.org/10.3390/ijms17030274 | ||
CYP340AA4 | Spodoptera frugiperda | spinetoram | Wang et al., 2024 | doi.org/10.1017/S000748532300038X | ||
CYP340AD3 | Spodoptera frugiperda | spinetoram,thiamethoxam,λ-cyhalothrin,emamectin benzoate,chlorfenapyr | Lu et al., 2024 | doi.org/10.1002/ps.8054 | ||
CYP340AX8v2 | Spodoptera frugiperda | tetraniliprole,spinetoram | Wang et al., 2024 | doi.org/10.1017/S000748532300038X | ||
CYP340AX8 | Spodoptera litura | cyantraniliprole | Li et al., 2023 | doi.org/10.1021/acs.jafc.3c04865 | ||
CYP341B15v2 | Spodoptera frugiperda | spinetoram,emamectin benzoate | Wang et al., 2024 | doi.org/10.1017/S000748532300038X | ||
CYP341B17v2 | Spodoptera frugiperda | tetraniliprole | Wang et al., 2024 | doi.org/10.1017/S000748532300038X | ||
CYP350D1 | Leptinotarsa decemlineata | chlorantraniliprole | Dumas et al., 2019 | doi.org/10.1002/arch.21642 | ||
CYP380C6 | Aphis gossypii | spirotetramat | Pan et al., 2018 | |||
CYP380C7 | Rhopalosiphum padi | λ-cyhalothrin | Wang et al., 2022 | doi.org/10.1016/j.pestbp.2022.105088 | ||
CYP380C10 | Nilaparvata lugens | low survival,loss of cuticular hydrocarbons, no effect of RNAi for 17 other CYP4 clan P450s | Wang et al., 2022 | doi.org/10.1016/j.jinsphys.2022.104380 | ||
CYP389A1 | Tetranychus cinnabarinus | cyflumetofen | Feng et al., 2023 | doi.org/10.1111/1744-7917.13151 | ||
CYP389B1 | Tetranychus cinnabarius | fenpropathrin | Shi et al., 2016 | doi.org/10.1111/imb.12251 | ||
CYP389C2 | Tetranychus cinnabarinus | cyflumetofen | Feng et al., 2023 | doi.org/10.1111/1744-7917.13151 | ||
CYP389C10 | Tetranychus urticae | abamectin | Xu et al., 2021 | doi.org/10.1002/ps.6130 | ||
CYP389C16 | Tetranychus cinnabarius | cyflumetofen, pyridaben, AB-1 (active de-esterified metabolite of cyflumetofen) | Feng et al., 2019 | doi.org/10.1002/ps.5564 | ||
CYP391A1 | Tetranychus cinnabarius | fenpropathrin | Shi et al., 2016 | doi.org/10.1111/imb.12251 | ||
CYP427A1 | Nilaparvata lugens | no effect on chlorpyrifos tox | Zhang et al., 2023 | doi.org/10.1021/acs.jafc.2c08957 | ||
CYP439A1 | Nilaparvata lugens | chlorpyrifos and imidacloprid mix | Xu et al., 2020 | |||
CYP439A2 | Nilaparvata lugens | etofenprox | Zhang et al., 2024 | doi.org/10.1016/j.jare.2024.11.006 | ||
CYP3093A11 | Triatoma infestans | no effect on deltamethrin toxicity | Dulbecco et al., 2018 | doi.org/10.1038/s41598-018-28475-x | ||
Mito clan | ||||||
CYP12D1 | Drosophila melanogaster | DDT | Gellatly et al., 2015 | doi.org/10.1016/j.pestbp.2015.01.001 | ||
CYP12D1 | Drosophila melanogaster | DDT | Kim et al., 2018 | doi.org/10.1016/j.pestbp.2018.03.003 | ||
CYP301A1 | Drosophila melanogaster | abdominal cuticle defects at adult emergence | Sztal et al., 2012 | doi.org/10.1371/journal.pone.0036544 | ||
CYP301A1 | Apis cerana | thiamethoxam, dichlorvos, paraquat, deltamethrin | Zhang et al., 2019 | doi.org/10.3389/fgene.2019.01000 | ||
CYP301B1 | Nilaparvata lugens | b-asarone | Xu et al. 2021 | doi.org/10.1016/j.ijbiomac.2020.12.217 | ||
CYP301B1 | Nilaparvata lugens | pymetrozine | Sun et al., 2024 | doi.org/10.1016/j.pestbp.2024.106199 | ||
CYP302A1 | Portunus trituberculatus (Decapoda) | marginal effect on 20E titer only day 2 p.i. | Xie et al., 2016 | doi.org/10.1016/j.cbpa.2016.06.001 | ||
CYP302A1 | Macrobrachium nipponense (Decapoda) | some decrease in E titer, some delayed molting and ovarian maturation | Zheng et al., 2023 | doi.org/10.1016/j.jsbmb.2023.106336 | ||
CYP302A1 | Sogatella furcifera | lower survivorship and development affected | Wan et al., 2014 | doi.org/10.1371/journal.pone.0086675 | ||
CYP302A1 | Laodelphax striatellus | lower survivorship and development affected | Wan et al., 2014 | doi.org/10.1371/journal.pone.0086675 | ||
CYP302A1 | Locusta migratoria | little molting failure L3 to L4 | Zhang et al., 2022 | doi.org/10.1111/1744-7917.12907 | ||
CYP302A1 | Schistocerca gregaria | NO effect on the development and shape of growing oocytes in adult females, or on the shape (length/width ratio) of the deposited eggs. Oviposition and hatching success were NOT negatively affected | Schellens et al., 2022 | doi.org/10.3390/ijms23169232 | ||
CYP302A1 | Nilaparvata lugens | no eggs hatching | Zhou et al., 2020 | doi.org/10.1016/j.ibmb.2020.103428 | ||
CYP302A1 | Nilaparvata lugens | gene wrongly called CYP320A1 or CYP3230A1 but is LOC111060963, 302A1 | low survival on rice | Rout et al., 2023 | doi.org/10.3390/cimb45080429 | |
CYP302A1 | Diaphorina citri | reduced 20E titer, lower survivorship | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105361 | ||
CYP302A1 | Daphnia sinensis | molting delay,embryonic development impaired | Qi et al.,2023 | |||
CYP302A1 | Spodoptera frugiperda | larval mortality. reduced larval weight and longer developmental time when fed rice | Hafeez et al.2023 | doi.org/10.3389/fpls.2022.1079442 | ||
CYP302A1 | Lasioderma serricorne (beetle) | lower ecdysteroid titer, impaired development | Yan et al., 2023[ 10.1127/entomologia/2023/2033 | |||
CYP302A1 | Calliptamus italicus (Acridid) | delays egg diapause termination | Zhao et al., 2024 | doi.org/10.1002/ps.8308 | ||
CYP302A1 | Solenopsis invicta | no effect of flonicamid (in queens) | Zhang et al., 2024 | doi.org/10.1021/acs.jafc.4c08903 | ||
CYP314A1 | Schistocerca gregaria | blocks 20E production,increasing E/20E ratio in hemolymph, no effect on molting | Marchal et al. 2012 | doi.org/10.1016/j.jinsphys.2012.03.013 | ||
CYP314A1 | Schistocerca gregaria | effect on the development and shape of growing oocytes in adult females, and on the shape (length/width ratio) of the deposited eggs. Oviposition and hatching success were negatively affected | Schellens et al., 2022 | doi.org/10.3390/ijms23169232 | ||
CYP314A1 | Anopheles gambiae | reduced ecdysteroid production by ovaries | Pondeville et al., 2013 | doi.org/10.1371/journal.pone.0079861 | ||
CYP314A1 | Leptinotarsa decemlineata | larval lethality,lower 20E titer | Kong et al., 2014 | doi.org/10.1111/imb.12115 | ||
CYP314A1 | Nilaparvata lugens | lower 20E titer,larval mortality, ovarian growth arrest | Zhou et al., 2020 | doi.org/10.1016/j.ibmb.2020.103428 | ||
CYP314A1 | Locusta migratoria | little molting failure L3 to L4 | Zhang et al., 2022 | doi.org/10.1111/1744-7917.12907 | ||
CYP314A1 | Diaphorina citri | thiamethoxam, cypermethrin | reduced 20E titer, lower survivorship | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105361 | |
CYP314A1 | Culex pipiens pallens | deltamethrin | Sun et al.,2019 | doi:.org/10.1017/S0031182018001002 | ||
CYP314A1 | Tetranychus cinnabarinus | lower ecdysteroid titer,lower Vg expression, reduced fecundity | Shen et al.,2022 | doi.org/10.1111/1744-7917.12970 | ||
CYP314A1 | Grapholita molesta (Tortricidae) | emamectin benzoate | Liu et al., 2023 | doi.org/10.3390/ijms242015435 | ||
CYP314A1 | Lasioderma serricorne (beetle) | lower ecdysteroid titer, impaired development | Yan et al., 2023[ 10.1127/entomologia/2023/2033 | |||
CYP314A1 | Bactrocera minax | larval mortality, pupation failure, reduced 20E titer | Zhou et al., 2022 | doi.org/10.1002/ps.6966 | ||
CYP315A1 | Tetranychus cinnabarinus | lower ecdysteroid titer,lower Vg expression, reduced fecundity | Shen et al.,2022 | doi.org/10.1111/1744-7917.12970 | ||
CYP315A1 | Laeodelphax striatellus | nymphal lethality, delayed development | Wan et al., 2014 | doi.org/10.1002/ps.3780 | ||
CYP315A1 | Plutella xylostella | lower 20E titer,lower Vg levels | Peng et al., 2019 | doi.org/10.3389/fphys.2019.01120 | ||
CYP315A1 | Bemisia tabaci MEAM1 | lower survival of nymphs | Luan et al., 2013 | doi.org/10.1016/j.ibmb.2013.05.012 | ||
CYP315A1 | Nilaparvata lugens | late larval mortality | Zhou et al., 2020 | doi.org/10.1016/j.ibmb.2020.103428 | ||
CYP315A1 | Portunus trituberculatus (Decapoda) | some effect on 20E titer only day 4 p.i. | Xie et al., 2016 | doi.org/10.1016/j.cbpa.2016.06.001 | ||
CYP315A1 | Laodelphax striatellus | reduced survival, delayed development | Wan et al., 2014 | doi.org/10.1002/ps.3780 | ||
CYP315A1 | Bombyx mori | pupae treated, upregulation of kynurenine biosynthesis genes but no effect egg diapause | Zhu et al., 2019 | doi.org/10.1016/j.gene.2019.03.054 | ||
CYP315A1 | Locusta migratoria | little molting failure L3 to L4 | Zhang et al., 2022 | doi.org/10.1111/1744-7917.12907 | ||
CYP315A1 | Schistocerca gregaria | effect on the development and shape of growing oocytes in adult females, and on the shape (length/width ratio) of the deposited eggs. Oviposition and hatching success were negatively affected | Schellens et al., 2022 | doi.org/10.3390/ijms23169232 | ||
CYP315A1 | Diaphorina citri | thiamethoxam, cypermethrin | reduced 20E titer, lower survivorship | Zhang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105361 | |
CYP315A1 | Lasioderma serricorne (beetle) | lower ecdysteroid titer, impaired development | Yan et al., 2023[ 10.1127/entomologia/2023/2033 | |||
CYP333A36 | Glyphodes pyloalis | tolfenpyrad | Pan et al., 2023 PBP | |||
CYP339A1 | Spodoptera litura | indoxacarb | Li et al., 2023 | doi.org/10.1016/j.jhazmat.2023.132605 | ||
CYP353D1 | Nilaparvata lugens | chlorpyrifos and imidacloprid mix | Xu et al., 2020 | |||
CYP419A1 | Laodelphax striatellus | triflumezopyrim | Wang et al., 2023 | doi.org/10.1016/j.pestbp.2023.105413 | ||
unclear CYP id: | ||||||
comp30167, 38558, 40700 and 44013 called CYP9b2 CYP49a1 CYP12b1 | Bradysia odoriphaga | imidacloprid | Chen et al., 2018 | doi.org/10.1038/s41598-018-20981-2 | ||
DN2722 (6?) | Megalurothrips usitatus | acetamiprid | Chen et al., 2023 | doi.org/10.3389/fphys.2023.1130389 | ||
CCG018948 wrongly called CYP6A8 | Aedes albopictus | deltamethrin | Xu et al., 2018 | doi.org/10.1371/journal.pntd.0006828 | ||
CYP6A14-1 ???= Cluster–666.21614 (transcript) | Sitobion avenae | imidacloprid | Zhang et al., 2020 | doi.org/10.1016/j.cropro.2019.105014 | ||
CYP9E2-like ???? | Leptinotarsa decemlineata | imidacloprid | Naqquash et al., 2020 | |||
EEF01131148 | Leptinotarsa decemlineata | imidacloprid | Naqquash et al., 2020 | |||
CYP6UN1 ??? | Aphis gossypii | dinotefuran | Chen et al., 2020 | doi.org/10.1016/j.pestbp.2020.104601 | ||
CYP6BJa/b ??? | Leptinotarsa decemlineata | imidacloprid, potato leaf extract | Kalsi et al., 2017 | doi.org/10.1016/j.ibmb.2017.02.002 | ||
cyp3 clan, 4 genes | Spodoptera litura | Cheng et al., 2017 | doi.org/10.1038/s41559-017-0314-4 | |||
CYP6B2? | Cydia pomonella | deltamethrin, azinphos methyl, NOT imidacloprid | Wan et al., 2019 | doi.org/10.1038/s41467-019-12175-9 |
effects_of_p450_knockdown_by_rnai.txt · Last modified: 2025/01/12 14:11 by renefeyereisen