User Tools

Site Tools


references

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
references [2025/08/27 14:26] renefeyereisenreferences [2025/09/27 14:32] (current) renefeyereisen
Line 306: Line 306:
  
 Charamis, J., Dermauw, W., Van Leeuwen, T., Vontas, J., Feyereisen, R., 2025. The Charamis, J., Dermauw, W., Van Leeuwen, T., Vontas, J., Feyereisen, R., 2025. The
-Arthropod P450 Enchiridion: An integrated web resource for research on P450s, Insect Biochemistry and Molecular Biology,183: 104377. https://doi.org/10.1016/j.ibmb.2025.104377.+Arthropod P450 Enchiridion: An integrated web resource for research on P450s, Insect Biochemistry and Molecular Biology, https://doi.org/10.1016/j.ibmb.2025.104377.
  
 Chase, J., Touhara, K., Prestwich, G.D., Schal, C., Blomquist, G.J., 1992. Biosynthesis and endocrine control of the production of the German cockroach sex pheromone 3,11-dimethylnonacosan-2-one. Proceedings of the National Academy of Sciences 89, 6050–6054. https://doi.org/10.1073/pnas.89.13.6050 Chase, J., Touhara, K., Prestwich, G.D., Schal, C., Blomquist, G.J., 1992. Biosynthesis and endocrine control of the production of the German cockroach sex pheromone 3,11-dimethylnonacosan-2-one. Proceedings of the National Academy of Sciences 89, 6050–6054. https://doi.org/10.1073/pnas.89.13.6050
Line 443: Line 443:
 Cohen, M.B., Koener, J.F., Feyereisen, R., 1994. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly. Gene 146, 267–272. https://doi.org/10.1016/0378-1119(94)90304-2 Cohen, M.B., Koener, J.F., Feyereisen, R., 1994. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly. Gene 146, 267–272. https://doi.org/10.1016/0378-1119(94)90304-2
  
-Cohen, Z.P., Schoville, S.D., Hawthorne, D.J., 2023. The role of structural variants in pest adaptation and genome evolution of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Molecular Ecology mec.16838. https://doi.org/10.1111/mec.16838+Cohen ZP, Schoville SD, Hawthorne DJ. 2023. The role of structural variants in pest adaptation and genome evolution of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Mol Ecol.32:1425-1440. doi.org/10.1111/mec.16838
  
 Collins, P.J., Hooper, G.H.S., 1984. The microsomal mixed-function oxidase system of Heliothis punctiger Wallengren and H. Armiger (Hübner) (Lepidoptera: Noctuidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 77, 849–855. https://doi.org/10.1016/0305-0491(84)90323-7 Collins, P.J., Hooper, G.H.S., 1984. The microsomal mixed-function oxidase system of Heliothis punctiger Wallengren and H. Armiger (Hübner) (Lepidoptera: Noctuidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 77, 849–855. https://doi.org/10.1016/0305-0491(84)90323-7
Line 596: Line 596:
  
 Djoko Tagne, C.S., Kouamo, M.F.M., Tchouakui, M., Muhammad, A., Mugenzi, L.J.L., Tatchou-Nebangwa, N.M.T., Thiomela, R.F., Gadji, M., Wondji, M.J., Hearn, J., Desire, M.H., Ibrahim, S.S., Wondji, C.S., 2025. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. GENETICS 229, 1–40. https://doi.org/10.1093/genetics/iyae181 Djoko Tagne, C.S., Kouamo, M.F.M., Tchouakui, M., Muhammad, A., Mugenzi, L.J.L., Tatchou-Nebangwa, N.M.T., Thiomela, R.F., Gadji, M., Wondji, M.J., Hearn, J., Desire, M.H., Ibrahim, S.S., Wondji, C.S., 2025. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. GENETICS 229, 1–40. https://doi.org/10.1093/genetics/iyae181
 +
 +Djouaka, R.F., Bakare, A.A., Coulibaly, O.N., Akogbeto, M.C., Ranson, H., Hemingway, J., Strode, C., 2008. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 9, 538. https://doi.org/10.1186/1471-2164-9-538
 +
  
 Domanitskaya, E., Anllo, L., Schüpbach, T., 2014. Phantom, a cytochrome P450 enzyme essential for ecdysone biosynthesis, plays a critical role in the control of border cell migration in Drosophila. Developmental Biology 386, 408–418. https://doi.org/10.1016/j.ydbio.2013.12.013 Domanitskaya, E., Anllo, L., Schüpbach, T., 2014. Phantom, a cytochrome P450 enzyme essential for ecdysone biosynthesis, plays a critical role in the control of border cell migration in Drosophila. Developmental Biology 386, 408–418. https://doi.org/10.1016/j.ydbio.2013.12.013
Line 777: Line 780:
  
 Fu, C., Yang, D., Long, W.C., Xiao, X., Wang, H., Jiang, N., Yang, Y., 2024. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti. BMC Genomics 25, 453. https://doi.org/10.1186/s12864-024-10372-5 Fu, C., Yang, D., Long, W.C., Xiao, X., Wang, H., Jiang, N., Yang, Y., 2024. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti. BMC Genomics 25, 453. https://doi.org/10.1186/s12864-024-10372-5
 +
 +Fu, K.-Y., He, M., Jin, L., Li, G.-Q., 2025. RNA interference targeting cytochrome P450 cyp303a1 on the performance of Henosepilachna vigintioctopunctata. Pesticide Biochemistry and Physiology 214, 106621. https://doi.org/10.1016/j.pestbp.2025.106621
 +
  
 Fu, N., Becker, T., Brandt, W., Kunert, M., Burse, A., Boland, W., 2022. Involvement of CYP347W1 in neurotoxin 3‐nitropropionic acid‐based chemical defense in mustard leaf beetle Phaedon cochleariae. Insect Science 29, 453–466. https://doi.org/10.1111/1744-7917.12944 Fu, N., Becker, T., Brandt, W., Kunert, M., Burse, A., Boland, W., 2022. Involvement of CYP347W1 in neurotoxin 3‐nitropropionic acid‐based chemical defense in mustard leaf beetle Phaedon cochleariae. Insect Science 29, 453–466. https://doi.org/10.1111/1744-7917.12944
Line 1653: Line 1659:
  
 Li, G., Niu, J.-Z., Zotti, M., Sun, Q.-Z., Zhu, L., Zhang, J., Liao, C.-Y., Dou, W., Wei, D.-D., Wang, J.-J., Smagghe, G., 2017. Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri). Insect Biochemistry and Molecular Biology 87, 136–146. https://doi.org/10.1016/j.ibmb.2017.06.009 Li, G., Niu, J.-Z., Zotti, M., Sun, Q.-Z., Zhu, L., Zhang, J., Liao, C.-Y., Dou, W., Wei, D.-D., Wang, J.-J., Smagghe, G., 2017. Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri). Insect Biochemistry and Molecular Biology 87, 136–146. https://doi.org/10.1016/j.ibmb.2017.06.009
 +
 +Li, H., Kong, X., Fang, Y., Hou, J., Zhang, W., Zhang, Y., Wei, J., Li, X., 2025. Aphis craccivora (Hemiptera: Aphididae) synthesizes juvenile hormone III via a pathway involving epoxidation followed by esterification, potentially providing an epoxidation active site for the synthesis of juvenile hormone SB3. Insect Science 32, 1311–1330. https://doi.org/10.1111/1744-7917.13450
  
 Li, H., Liu, S., Chen, L., Luo, J., Zeng, D., Li, X., 2021. Juvenile hormone and transcriptional changes in honey bee worker larvae when exposed to sublethal concentrations of thiamethoxam. Ecotoxicology and Environmental Safety 225, 112744. https://doi.org/10.1016/j.ecoenv.2021.112744 Li, H., Liu, S., Chen, L., Luo, J., Zeng, D., Li, X., 2021. Juvenile hormone and transcriptional changes in honey bee worker larvae when exposed to sublethal concentrations of thiamethoxam. Ecotoxicology and Environmental Safety 225, 112744. https://doi.org/10.1016/j.ecoenv.2021.112744
Line 1813: Line 1821:
 Liu, J., Hua, J., Wang, Y., Guo, X., Luo, S., 2023. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. J. Agric. Food Chem. 71, 10670–10682. https://doi.org/10.1021/acs.jafc.3c02779 Liu, J., Hua, J., Wang, Y., Guo, X., Luo, S., 2023. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. J. Agric. Food Chem. 71, 10670–10682. https://doi.org/10.1021/acs.jafc.3c02779
  
-Liu, J., Wu, H., Zhang, X., Ma, W., Zhu, W., Silver, K., Ma, E., Zhang, J., Zhu, K.Y., 2019. Metabolism of selected model substrates and insecticides by recombinant CYP6FD encoded by its gene predominately expressed in the brain of Locusta migratoria. Pesticide Biochemistry and Physiology 159, 154–162. https://doi.org/10.1016/j.pestbp.2019.06.011+Liu, J, Wang, Z, Yin, S., Wang, Z, Wu, M., Qin, J., Liu, J, Wang, C., 2025. Functional analysis of the regulation of beta-cypermethrin resistance by Deg-CYP-3 in Dermanyssus gallinae. Pesticide Biochemistry and Physiology 215, 106682. https://doi.org/10.1016/j.pestbp.2025.106682 [this P450 should be called CYP3107G18] 
 + 
 + 
 +Liu, J., Wu, H., Zhang, X., Ma, W., Zhu, W., Silver, K., Ma, E., Zhang, J., Zhu, K.Y., 2019. Metabolism of selected model substrates and insecticides by recombinant CYP6FD encoded by its gene predominately expressed in the brain of Locusta migratoria. Pesticide Biochemistry and Physiology 159, 154–162. https://doi.org/10.1016/j.pestbp.2019.06.011 [this is CYP6FD1]
  
 Liu, Jiao, Wu, H., Zhang, Y., Zhang, J., Ma, E., Zhang, X., 2023. Transcription factors, cap ‘n’ collar isoform C regulates the expression of CYP450 genes involving in insecticides susceptibility in Locusta migratoria. Pesticide Biochemistry and Physiology 196, 105627. https://doi.org/10.1016/j.pestbp.2023.105627 Liu, Jiao, Wu, H., Zhang, Y., Zhang, J., Ma, E., Zhang, X., 2023. Transcription factors, cap ‘n’ collar isoform C regulates the expression of CYP450 genes involving in insecticides susceptibility in Locusta migratoria. Pesticide Biochemistry and Physiology 196, 105627. https://doi.org/10.1016/j.pestbp.2023.105627
Line 1825: Line 1836:
 Lin, K., Wu, H., Li, Z., Zhong, Z., He, L., Guo, Y., Zhang, J., Xu, X., Zhang, W., Jin, F., Pang, R., 2025. Phylogenetic and toxicogenomic profiling of CYPomes to elucidate convergent and divergent insecticide resistance profiles in three rice planthopper species. J Pest Sci. https://doi.org/10.1007/s10340-025-01913-2 Lin, K., Wu, H., Li, Z., Zhong, Z., He, L., Guo, Y., Zhang, J., Xu, X., Zhang, W., Jin, F., Pang, R., 2025. Phylogenetic and toxicogenomic profiling of CYPomes to elucidate convergent and divergent insecticide resistance profiles in three rice planthopper species. J Pest Sci. https://doi.org/10.1007/s10340-025-01913-2
  
-Liu, L., Wang, W.-J., Song, L.-W., Wu, Y.-T., Wei, J.-W., Wang, S.-S., Zhou, J.-J., 2023. ApCYP4C6 participates in the metabolism of glucosinolates in pea aphids Acyrthosiphon pisum. Journal of Asia-Pacific Entomology 26, 102030. https://doi.org/10.1016/j.aspen.2022.102030+Liu, L., Wang, W.-J., Song, L.-W., Wu, Y.-T., Wei, J.-W., Wang, S.-S., Zhou, J.-J., 2023. ApCYP4C6 participates in the metabolism of glucosinolates in pea aphids Acyrthosiphon pisum. Journal of Asia-Pacific Entomology 26, 102030. https://doi.org/10.1016/j.aspen.2022.102030 [the correct name of this P450 is CYP380C9]
  
 Liu, M., Xiao, F., Zhu, J., Fu, D., Wang, Z., Xiao, R., 2023. Combined PacBio Iso-Seq and Illumina RNA-Seq Analysis of the Tuta absoluta (Meyrick) Transcriptome and Cytochrome P450 Genes. Insects 14, 363. https://doi.org/10.3390/insects14040363 Liu, M., Xiao, F., Zhu, J., Fu, D., Wang, Z., Xiao, R., 2023. Combined PacBio Iso-Seq and Illumina RNA-Seq Analysis of the Tuta absoluta (Meyrick) Transcriptome and Cytochrome P450 Genes. Insects 14, 363. https://doi.org/10.3390/insects14040363
Line 2128: Line 2139:
  
 Miyo, T., Kono, Y., Oguma, Y., 2002. Genetic basis of cross-resistance to three organophosphate insecticides in Drosophila melanogaster (Diptera: Drosophilidae). J Econ Entomol 95, 871-877. Miyo, T., Kono, Y., Oguma, Y., 2002. Genetic basis of cross-resistance to three organophosphate insecticides in Drosophila melanogaster (Diptera: Drosophilidae). J Econ Entomol 95, 871-877.
 +
 +Mohan, M., Basavaarya, B.R., Ashok, K., Malarvizhi, S., Aneesha, P.J., Gracy, G.R., Venkatesan, T., Ramya, R.S., Sushil, S.N., 2025. Investigating imidacloprid resistance in Amrasca biguttula biguttula (Ishida) (Hemiptera: Cicadellidae): Insights from RNA-Seq and functional validation using RT-qPCR. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 56, 101630. https://doi.org/10.1016/j.cbd.2025.101630
  
 Morello A. 1964. Role of DDT-hydroxylation in resistance. Nature 203: 785-786. Morello A. 1964. Role of DDT-hydroxylation in resistance. Nature 203: 785-786.
Line 2438: Line 2451:
  
 Peyser, R.D., Lanno, S.M., Shimshak, S.J., Coolon, J.D., 2017. Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia. Insect Mol Biol 26, 715–720. https://doi.org/10.1111/imb.12329 Peyser, R.D., Lanno, S.M., Shimshak, S.J., Coolon, J.D., 2017. Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia. Insect Mol Biol 26, 715–720. https://doi.org/10.1111/imb.12329
 +
 +Pfannenstiel, L.J., Dressel, A.E., De Guzman, G.A.O., Scott, J.G., Buchon, N., 2025. Piperonyl butoxide induces a unique gene expression of both detoxification and lipid metabolism genes and is independent of nutrition, microbiota, and genetic background. Pesticide Biochemistry and Physiology 215, 106708. https://doi.org/10.1016/j.pestbp.2025.106708
 +
 +Pfannenstiel, L.J., Scott, J.G., Buchon, N., 2024. Piperonyl butoxide elicits a robust transcriptional response in adult Drosophila melanogaster. Pesticide Biochemistry and Physiology 204, 106102. https://doi.org/10.1016/j.pestbp.2024.106102
 +
  
 Philippou, D., Borzatta, V., Capparella, E., Moroni, L., Field, L., Moores, G., 2016. The use of substituted alkynyl phenoxy derivatives of piperonyl butoxide to control insecticide-resistant pests: The use of PBO derivatives to control insecticide-resistant pests. Pest. Manag. Sci. 72, 1946–1950. https://doi.org/10.1002/ps.4234 Philippou, D., Borzatta, V., Capparella, E., Moroni, L., Field, L., Moores, G., 2016. The use of substituted alkynyl phenoxy derivatives of piperonyl butoxide to control insecticide-resistant pests: The use of PBO derivatives to control insecticide-resistant pests. Pest. Manag. Sci. 72, 1946–1950. https://doi.org/10.1002/ps.4234
Line 2642: Line 2660:
  
 Saito, J., Kimura, R., Kaieda, Y., Nishida, R., Ono, H., 2016. Characterization of candidate intermediates in the Black Box of the ecdysone biosynthetic pathway in Drosophila melanogaster: Evaluation of molting activities on ecdysteroid-defective larvae. Journal of Insect Physiology 93–94, 94–104. https://doi.org/10.1016/j.jinsphys.2016.09.012 Saito, J., Kimura, R., Kaieda, Y., Nishida, R., Ono, H., 2016. Characterization of candidate intermediates in the Black Box of the ecdysone biosynthetic pathway in Drosophila melanogaster: Evaluation of molting activities on ecdysteroid-defective larvae. Journal of Insect Physiology 93–94, 94–104. https://doi.org/10.1016/j.jinsphys.2016.09.012
 +
 +Saladini Di Rovetino, M., Lueke, B., Masawang, K., Piyasaengthong, N., Kaewwongse, M., Nobsathian, S., Fricaux, T., Nam, K., d’Alençon, E., Bullangpoti, V., Nauen, R., Le Goff, G., 2025. Monitoring the molecular mechanisms of insecticide resistance in Spodoptera frugiperda populations from Thailand. Pesticide Biochemistry and Physiology 214, 106599. https://doi.org/10.1016/j.pestbp.2025.106599
  
 Salces-Ortiz, J., Vargas-Chavez, C., Guio, L., Rech, G.E., González, J., 2020. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Phil. Trans. R. Soc. B 375, 20190341. https://doi.org/10.1098/rstb.2019.0341 Salces-Ortiz, J., Vargas-Chavez, C., Guio, L., Rech, G.E., González, J., 2020. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Phil. Trans. R. Soc. B 375, 20190341. https://doi.org/10.1098/rstb.2019.0341
Line 3312: Line 3332:
  
 Wen, X., Feng, K., Qin, J., Wei, P., Cao, P., Zhang, Y., Yuchi, Z., He, L., 2023. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). PLoS Genet 19, e1010911. https://doi.org/10.1371/journal.pgen.1010911  Wen, X., Feng, K., Qin, J., Wei, P., Cao, P., Zhang, Y., Yuchi, Z., He, L., 2023. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). PLoS Genet 19, e1010911. https://doi.org/10.1371/journal.pgen.1010911 
 +
 +Wen, X., Feng, K., Wei, P., Li, J., Li, M., Dou, W., Guo, Z., Zhang, Y., He, L., 2025. The ROS–FOXO pathway mediates broad-spectrum detoxification of acaricides in Tetranychus cinnabarinus. Commun Biol 8, 1274. https://doi.org/10.1038/s42003-025-08726-0
 +
  
 Wen, Z., Scott, J., 2001. Cloning of two novel P450 cDNAs from German cockroaches, Blattella germanica (L.): CYP6K1 and CYP6J1. Insect Mol Biol 10, 131-137. Wen, Z., Scott, J., 2001. Cloning of two novel P450 cDNAs from German cockroaches, Blattella germanica (L.): CYP6K1 and CYP6J1. Insect Mol Biol 10, 131-137.
Line 3350: Line 3373:
  
 Wilding, C.S., Smith, I., Lynd, A., Yawson, A.E., Weetman, D., Paine, M.J.I., Donnelly, M.J., 2012. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection. Insect Biochemistry and Molecular Biology 42, 699–707. https://doi.org/10.1016/j.ibmb.2012.06.003 Wilding, C.S., Smith, I., Lynd, A., Yawson, A.E., Weetman, D., Paine, M.J.I., Donnelly, M.J., 2012. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection. Insect Biochemistry and Molecular Biology 42, 699–707. https://doi.org/10.1016/j.ibmb.2012.06.003
 +
 +Wilhelm, L., Wang, Y., Xu, S., 2025. Gene expression atlas of the Colorado potato beetle (Leptinotarsa decemlineata). Sci Data 12, 299. https://doi.org/10.1038/s41597-025-04607-7
  
 Wilkinson, C.F., Brattsten, L.B., 1972. Microsomal Drug Metabolizing Enzymes in Insects. Drug Metabolism Reviews 1, 153–227. https://doi.org/10.3109/03602537208993912 Wilkinson, C.F., Brattsten, L.B., 1972. Microsomal Drug Metabolizing Enzymes in Insects. Drug Metabolism Reviews 1, 153–227. https://doi.org/10.3109/03602537208993912
Line 3522: Line 3547:
  
 Yamazaki, Y., Kiuchi, M., Takeuchi, H., Kubo, T., 2011. Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. Insect Biochemistry and Molecular Biology 41, 283–293. https://doi.org/10.1016/j.ibmb.2011.01.005  Yamazaki, Y., Kiuchi, M., Takeuchi, H., Kubo, T., 2011. Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. Insect Biochemistry and Molecular Biology 41, 283–293. https://doi.org/10.1016/j.ibmb.2011.01.005 
 +
 +Yan, J., Zhang, C., Zhang, M., Zhou, H., Zuo, Z., Ding, X., Zhang, R., Li, F., Gao, Y., 2023. Chromosome-level genome assembly of the Colorado potato beetle, Leptinotarsa decemlineata. Sci Data 10, 36. https://doi.org/10.1038/s41597-023-01950-5
  
 Yang J, Fu B, Gong P, Zhang C, Wei X, Yin C, Huang M, He C, Du T, Liang J, Liu S, Ji Y, Xue H, Wang C, Hu J, Du H, Zhang R, Yang X, Zhang Y. 2023. CYP6CX2 and CYP6CX3 mediate thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). J Econ Entomol 116:1342-1351. https://doi.org/10.1093/jee/toad089 Yang J, Fu B, Gong P, Zhang C, Wei X, Yin C, Huang M, He C, Du T, Liang J, Liu S, Ji Y, Xue H, Wang C, Hu J, Du H, Zhang R, Yang X, Zhang Y. 2023. CYP6CX2 and CYP6CX3 mediate thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). J Econ Entomol 116:1342-1351. https://doi.org/10.1093/jee/toad089
references.txt · Last modified: by renefeyereisen