User Tools

Site Tools


references

Selected bibliography

Adesanya, A.W., Cardenas, A., Lavine, M.D., Walsh, D.B., Lavine, L.C., Zhu, F., 2020. RNA interference of NADPH-cytochrome P450 reductase increases susceptibilities to multiple acaricides in Tetranychus urticae. Pesticide Biochemistry and Physiology 165, 104550. https://doi.org/10.1016/j.pestbp.2020.02.016

Adolfi, A., Poulton, B., Anthousi, A., Macilwee, S., Ranson, H., Lycett, G.J., 2019. Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae. Proc Natl Acad Sci USA 116, 25764–25772. https://doi.org/10.1073/pnas.1914633116

Afschar, S., Toivonen, J.M., Hoffmann, J.M., Tain, L.S., Wieser, D., Finlayson, A.J., Driege, Y., Alic, N., Emran, S., Stinn, J., Froehlich, J., Piper, M.D., Partridge, L., 2016. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila. Proc Natl Acad Sci USA 113, 1321–1326. https://doi.org/10.1073/pnas.1515137113

Agosin, M. 1985. Role of microsomal oxidations in insecticide degradation. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12 (ed. G.A. Kerkut and L.I. Gilbert), p. 647-712. Pergamon.

Agosin, M., Srivatsan, J., 1991. Role of microsomal cytochrome P-450 in the formation of ecdysterone in larval house fly. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 99, 271–274. https://doi.org/10.1016/0305-0491(91)90040-K

Agosin M., Michaeli D., Miskus R., Nagasawa S., Hoskins W.M. 1961. A New DDT-metabolizing Enzyme in the German Cockroach. Journal of Economic Entomology, 54: 340–342. https://doi.org/10.1093/jee/54.2.340 

Agosin, M., Scaramelli, N., Gil, L., Letelier, M., 1969. Some properties of the microsomal system metabolizing DDT in Triatoma infestans. Comp Biochem Physiol 29, 785-793.

Ahmad, S. 1986. Enzymatic adaptations of herbivorous insects and mites to phytochemicals. J. Chem. Ecol., 12, 533-560.

Ahmad, S., Brattsten, L.B., Mullin, C.A. and Yu, S.J. 1986. Enzymes involved in the metabolism of plant allelochemicals. In: Molecular aspects of insect-plant interactions (ed. L.B. Brattsten and S. Ahmad), p. 73-151. Plenum Press.

Ahmad, S., Kirkland, K.E., Blomquist, G.J., 1987. Evidence for a sex pheromone metabolizing cytochrome P-450 mono-oxygenase in the housefly. Arch. Insect Biochem. Physiol. 6, 121–140. https://doi.org/10.1002/arch.940060206

Ai, J., Yu, Q., Cheng, T., Dai, F., Zhang, X., Zhu, Y., Xiang, Z., 2009. Characterization of multiple CYP9A genes in the silkworm, Bombyx mori. Mol Biol Rep

Ai, J., Zhu, Y., Duan, J., Yu, Q., Zhang, G., Wan, F., Xiang, Z., 2011. Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. Gene 480, 42–50. https://doi.org/10.1016/j.gene.2011.03.002

Aigrain, L., Pompon, D., Morera, S., Truan, G. 2009. Structure of the open conformation of a functional chimeric NADPH cytochrome P450 reductase. EMBO Rep 10, 742-7.

Alder A, Bigler P, Werck-Reichhart D, Al-Babili S. 2009. In vitro characterization of Synechocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase. Febs J 276: 5416-5431

Alptekin, S., Bass, C., Nicholls, C., Paine, M.J.I., Clark, S.J., Field, L., Moores, G.D., 2016. Induced thiacloprid insensitivity in honeybees ( Apis mellifera L.) is associated with up-regulation of detoxification genes. Insect Mol Biol 25, 171–180. https://doi.org/10.1111/imb.12211

Alvarez, M.V.N., Alonso, D.P., Kadri, S.M., Rufalco-Moutinho, P., Bernardes, I.A.F., de Mello, A.C.F., Souto, A.C., Carrasco-Escobar, G., Moreno, M., Gamboa, D., Vinetz, J.M., Conn, J.E., Ribolla, P.E.M., 2022. Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasites Vectors 15, 106. https://doi.org/10.1186/s13071-022-05219-5

Alyokhin, A., Chen, Y.H., 2017. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. Current Opinion in Insect Science 21, 33–38. https://doi.org/10.1016/j.cois.2017.04.006

Amenya, D., Naguran, R., Lo, T., Ranson, H., Spillings, B., Wood, O., Brooke, B., Coetzee, M., Koekemoer, L., 2008. Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol 17, 19-25

Amezian, D., Fricaux, T., De Sousa, G., Maiwald, F., Huditz, H.-I., Nauen, R., Le Goff, G., 2023. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. Pesticide Biochemistry and Physiology 195, 105563. https://doi.org/10.1016/j.pestbp.2023.105563

Amezian, D., Mehlhorn, S., Vacher-Chicane, C., Nauen, R., Le Goff, G., 2022. Spodoptera frugiperda Sf9 cells as a model system to investigate the role of detoxification gene expression in response to xenobiotics. Current Research in Insect Science 2, 100037. https://doi.org/10.1016/j.cris.2022.100037

Amezian, D., Nauen, R., Le Goff, G., 2021a. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. Pesticide Biochemistry and Physiology 174, 104822. https://doi.org/10.1016/j.pestbp.2021.104822

Amezian, D., Nauen, R., Le Goff, G., 2021b. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochemistry and Molecular Biology 138, 103646. https://doi.org/10.1016/j.ibmb.2021.103646

Andersen, J.F., Ceruso, M., Unnithan, G.C., Kuwano, E., Prestwich, G.D., Feyereisen, R., 1995. Photoaffinity labeling of methyl farnesoate epoxidase in cockroach corpora allata. Insect Biochemistry and Molecular Biology 25, 713–719. https://doi.org/10.1016/0965-1748(95)00010-S

Andersen, J.F., Utermohlen, J.G., Feyereisen, R., 1994. Expression of Housefly CYP6A1 and NADPH-Cytochrome P450 Reductase in Escherichia coli and Reconstitution of an Insecticide-Metabolizing P450 System. Biochemistry 33, 2171–2177. https://doi.org/10.1021/bi00174a025

Andersen, J.F., Walding, J.K., Evans, P.H., Bowers, W.S., Feyereisen, R., 1997. Substrate Specificity for the Epoxidation of Terpenoids and Active Site Topology of House Fly Cytochrome P450 6A1. Chem. Res. Toxicol. 10, 156–164. https://doi.org/10.1021/tx9601162

Anderson, C.J., Oakeshott, J.G., Tay, W.T., Gordon, K.H.J., Zwick, A., Walsh, T.K., 2018. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc Natl Acad Sci USA 115, 5034–5039. https://doi.org/10.1073/pnas.1718831115

Anderson, R., 1978. Aryl hydrocarbon hydroxylase induction in an insect, spodoptera eridania (cramer), by polychlorinated biphenyls (PCBs). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 60, 51-55.

Annalora AJ, Marcus CB, Iversen PL. 2017. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism. Drug Metab Dispos 45: 375-389.

Aragon S, Claudinot S, Blais C, Maibeche M, Dauphin-Villemant C 2002 Molting cycle-dependent expression of CYP4C15, a cytochrome P450 enzyme putatively involved in ecdysteroidogenesis in the crayfish, Orconectes limosus. Insect Biochem Mol Biol. 32: 153-159.

Arias RO, Terriere LC. 1962. The hydroxylation of naphthalene-1-14C by house fly microsomes. J. Econ. Entomol. 55: 925-929.

Arouri, R., Le Goff, G., Hemden, H., Navarro-Llopis, V., M’saad, M., Castañera, P., Feyereisen, R., Hernández-Crespo, P., Ortego, F., 2015. Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain: Resistance to lambda-cyhalothrin in Ceratitis capitata. Pest. Manag. Sci. 71, 1281–1291. https://doi.org/10.1002/ps.3924

Arshad, F., Sharma, A., Lu, C., Gulia-Nuss, M., 2021. RNAi by Soaking Aedes aegypti Pupae in dsRNA. Insects 12, 634. https://doi.org/10.3390/insects12070634

Bacot, T., Haberkorn, C., Guilliet, J., Cattel, J., Kefi, M., Nadalin, L., Filee, J., Boyer, F., Gaude, T., Laporte, F., Tutagata, J., Vontas, J., Dusfour, I., Bonneville, J.-M., David, J.-P., 2024. A genomic duplication spanning multiple P450s contributes to insecticide resistance in the dengue mosquito Aedes aegypti. https://doi.org/10.1101/2024.04.03.587871

Baek, J.H., Clark, J., Lee, S.H., 2009. Cross-strain comparison of cypermethrin-induced cytochrome P450 transcription under different induction conditions in diamonback moth. Pestic Biochem Physiol 96, 43-50.

Bagchi, V.A., Siegel, J.P., Demkovich, M.R., Zehr, L.N., Berenbaum, M.R., 2016. Impact of Pesticide Resistance on Toxicity and Tolerance of Hostplant Phytochemicals in Amyelois Transitella (Lepidoptera: Pyralidae). J Insect Sci 16, iew063. https://doi.org/10.1093/jisesa/iew063

Bailey, E., Field, L., Rawlings, C., King, R., Mohareb, F., Pak, K.-H., Hughes, D., Williamson, M., Ganko, E., Buer, B., Nauen, R., 2022. A near-chromosome level genome assembly of the European hoverfly, Sphaerophoria rueppellii (Diptera: Syrphidae), provides comparative insights into insecticide resistance-related gene family evolution. BMC Genomics 23, 198. https://doi.org/10.1186/s12864-022-08436-5

Bai-Zhong, Z., Xu, S., Cong-Ai, Z., Liu-Yang, L., Ya-She, L., Xing, G., Dong-Mei, C., Zhang, P., MIng-Wang, S., Xi-Ling, C., 2020. Silencing of Cytochrome P450 in Spodoptera frugiperda (Lepidoptera: Noctuidae) by RNA Interference Enhances Susceptibility to Chlorantraniliprole. Journal of Insect Science 20, 12. https://doi.org/10.1093/jisesa/ieaa047

Balabanidou, V., Grigoraki, L., Vontas, J., 2018. Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science 27, 68–74. https://doi.org/10.1016/j.cois.2018.03.001

Balabanidou, V., Kampouraki, A., MacLean, M., Blomquist, G.J., Tittiger, C., Juárez, M.P., Mijailovsky, S.J., Chalepakis, G., Anthousi, A., Lynd, A., Antoine, S., Hemingway, J., Ranson, H., Lycett, G.J., Vontas, J., 2016. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA 113, 9268–9273. https://doi.org/10.1073/pnas.1608295113

Balabanidou, V., Kefi, M., Aivaliotis, M., Koidou, V., Girotti, J.R., Mijailovsky, S.J., Juárez, M.P., Papadogiorgaki, E., Chalepakis, G., Kampouraki, A., Nikolaou, C., Ranson, H., Vontas, J., 2019. Mosquitoes cloak their legs to resist insecticides. Proc. R. Soc. B. 286, 20191091. https://doi.org/10.1098/rspb.2019.1091

Baldridge, G.D., Feyereisen, R., 1986. Blood meal and cytochrome P-450 monooxygenases in the northern house mosquito, Culex pipiens. Pesticide Biochemistry and Physiology 25, 407–413. https://doi.org/10.1016/0048-3575(86)90015-5

Baldwin, S.R., Mohapatra, P., Nagalla, M., Sindvani, R., Amaya, D., Dickson, H.A., Menuz, K., 2021. Identification and characterization of CYPs induced in the Drosophila antenna by exposure to a plant odorant. Sci Rep 11, 20530. https://doi.org/10.1038/s41598-021-99910-9

Balmert, N.J., Rund, S.S.C., Ghazi, J.P., Zhou, P., Duffield, G.E., 2014. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. Journal of Insect Physiology 64, 30–39. https://doi.org/10.1016/j.jinsphys.2014.02.013

Bao, H., Gao, H., Zhang, Y., Fan, D., Fang, J., Liu, Z., 2016. The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and detoxification efficiency. Pesticide Biochemistry and Physiology 129, 70–74. https://doi.org/10.1016/j.pestbp.2015.10.020

Bariami, V., Jones, C.M., Poupardin, R., Vontas, J., Ranson, H., 2012. Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti. PLoS Negl Trop Dis 6, e1692. https://doi.org/10.1371/journal.pntd.0001692

Baril, T., Pym, A., Bass, C., Hayward, A., 2023. Transposon accumulation at xenobiotic gene family loci in aphids. Genome Res. genome;gr.277820.123v1. https://doi.org/10.1101/gr.277820.123

Barnes, K.G., Irving, H., Chiumia, M., Mzilahowa, T., Coleman, M., Hemingway, J., Wondji, C.S., 2017a. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus. Proc Natl Acad Sci USA 114, 286–291. https://doi.org/10.1073/pnas.1615458114

Barnes, K.G., Weedall, G.D., Ndula, M., Irving, H., Mzihalowa, T., Hemingway, J., Wondji, C.S., 2017b. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control. PLoS Genet 13, e1006539. https://doi.org/10.1371/journal.pgen.1006539

Barth, M.B., Buchwalder, K., Kawahara, A.Y., Zhou, X., Liu, S., Krezdorn, N., Rotter, B., Horres, R., Hundsdoerfer, A.K., 2018. Functional characterization of the Hyles euphorbiae hawkmoth transcriptome reveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes. Front Zool 15, 20. https://doi.org/10.1186/s12983-018-0252-2

Bass, C., Carvalho, R.A., Oliphant, L., Puinean, A.M., Field, L.M., Nauen, R., Williamson, M.S., Moores, G., Gorman, K., 2011. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1 , is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 20, 763–773. https://doi.org/10.1111/j.1365-2583.2011.01105.x

Bass, C., Denholm, I., Williamson, M.S., Nauen, R., 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology 121, 78–87. https://doi.org/10.1016/j.pestbp.2015.04.004

Bass, C., Hayward, A., Troczka, B.J., Haas, J., Nauen, R., 2024. The molecular determinants of pesticide sensitivity in bee pollinators. Science of The Total Environment 915, 170174. https://doi.org/10.1016/j.scitotenv.2024.170174

Bass, C., Jones, C.M., 2016. Mosquitoes boost body armor to resist insecticide attack. Proc Natl Acad Sci USA 113, 9145–9147. https://doi.org/10.1073/pnas.1610992113

Bass, C., Zimmer, C.T., Riveron, J.M., Wilding, C.S., Wondji, C.S., Kaussmann, M., Field, L.M., Williamson, M.S., Nauen, R., 2013. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proceedings of the National Academy of Sciences 110, 19460–19465. https://doi.org/10.1073/pnas.1314122110

Bassett, M.H., McCarthy, J.L., Waterman, M.R., Sliter, T.J., 1997. Sequence and developmental expression of Cyp18, a member of a new cytochrome P450 family from Drosophila. Molecular and Cellular Endocrinology 131, 39–49. https://doi.org/10.1016/S0303-7207(97)00093-2

Battlay, P., Leblanc, P.B., Green, L., Garud, N.R., Schmidt, J.M., Fournier-Level, A., Robin, C., 2018. Structural Variants and Selective Sweep Foci Contribute to Insecticide Resistance in the Drosophila Genetic Reference Panel. G3 8, 3489–3497. https://doi.org/10.1534/g3.118.200619

Battlay, P., Schmidt, J.M., Fournier-Level, A., Robin, C., 2016. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster. G3 Genes|Genomes|Genetics 6, 2573–2581. https://doi.org/10.1534/g3.116.031054

Baudry J, Li W, Pan L, Berenbaum MR, Schuler MA. 2003. Molecular docking of substrates and inhibitors in the catalytic site of CYP6B1, an insect cytochrome p450 monooxygenase. Protein Eng 16, 577-87.

Bautista, M.A.M., Miyata, T., Miura, K., Tanaka, T., 2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology 39, 38-46.

Beadle, K., Singh, K.S., Troczka, B.J., Randall, E., Zaworra, M., Zimmer, C.T., Hayward, A., Reid, R., Kor, L., Kohler, M., Buer, B., Nelson, D.R., Williamson, M.S., Davies, T.G.E., Field, L.M., Nauen, R., Bass, C., 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLoS Genet 15, e1007903. https://doi.org/10.1371/journal.pgen.1007903

Bebbington PM, Morgan ED. 1977. Detection and identification of moulting hormone. ecdysones. in the barnacle Balanus balanoides. Comp Biochem Physiol, B 56: 77-79

Bede, J.C., Teal, P.E.A., Goodman, W.G., Tobe, S.S., 2001. Biosynthetic Pathway of Insect Juvenile Hormone III in Cell Suspension Cultures of the Sedge Cyperus iria. Plant Physiol. 127, 584–593. https://doi.org/10.1104/pp.010264

Benrabaa, S.A.M., Chang, S.A., Chang, E.S., Mykles, D.L., 2023. Effects of molting on the expression of ecdysteroid biosynthesis genes in the Y-organ of the blackback land crab, Gecarcinus lateralis. General and Comparative Endocrinology 114304. https://doi.org/10.1016/j.ygcen.2023.114304

Beran, F., Köllner, T.G., Gershenzon, J., Tholl, D., 2019. Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytol 223, 52–67.

Berenbaum, M.R. 2002. Postgenomic chemical ecology: from genetic code to ecological interactions.J. Chem. Ecol., 28, 873-96.

Berenbaum, M., Feeny, P., 1981. Toxicity of Angular Furanocoumarins to Swallowtail Butterflies: Escalation in a Coevolutionary Arms Race? Science 212, 927–929. https://doi.org/10.1126/science.212.4497.927

Berenbaum, M.R. and Neal, J.J. 1985. Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicant. J. Chem. Ecol., 11, 1349-1358.

Berenbaum, M.R., Favret, C. and Schuler, M.A. 1996. On Defining Key Innovations in an Adaptive Radiation - Cytochrome P450s and Papilionidae. American Naturalist, 148: S139-55.

Berenbaum, M.R., Bush, D.S., Liao, L.-H., 2021. Cytochrome P450-mediated mycotoxin metabolism by plant-feeding insects. Current Opinion in Insect Science 43, 85–91. https://doi.org/10.1016/j.cois.2020.11.007

Berenbaum, M.R., Johnson, R.M., 2015. Xenobiotic detoxification pathways in honey bees. Current Opinion in Insect Science 10, 51–58. https://doi.org/10.1016/j.cois.2015.03.005

Berenbaum, M.R., Liao, L.-H., 2019. Honey Bees and Environmental Stress: Toxicologic Pathology of a Superorganism. Toxicol Pathol 47, 1076–1081. https://doi.org/10.1177/0192623319877154

Bernabò, P., Gaglio, M., Bellamoli, F., Viero, G., Lencioni, V., 2017. DNA damage and translational response during detoxification from copper exposure in a wild population of Chironomus riparius. Chemosphere 173, 235–244. https://doi.org/10.1016/j.chemosphere.2017.01.052

Bernard, C.B. and Philogene, B.J. 1993. Insecticide synergists: role, importance, and perspectives. J. Toxicol. Environ. Health, 38, 199-223.

Bertok, B., Pap, L., Arvai, G., Bakonyvari, I., Kuruczne Ribai, Z., 2003. Structure-activity relationship study of alkynyl ether insecticide synergists and the development of MB-599 (verbutin). Pest Manag Sci 59, 377-392.

Bhaskara, S., Chandrasekharan, M., Ganguly, R., 2008. Caffeine induction of Cyp6a2 and Cyp6a8 genes of Drosophila melanogaster is modulated by cAMP and D-JUN protein levels. Gene 415, 49-59.

Bhaskara, S., Dean, E., Lam, V., Ganguly, R., 2006. Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene 377, 56-64.

Birnbaum, S.S.L., Rinker, D.C., Gerardo, N.M., Abbot, P., 2017. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Mol Ecol 26, 6742–6761. https://doi.org/10.1111/mec.14401

Birner-Gruenberger, R., Bickmeyer, I., Lange, J., Hehlert, P., Hermetter, A., Kollroser, M., Rechberger, G.N., Kühnlein, R.P., 2012. Functional fat body proteomics and gene targeting reveal in vivo functions of Drosophila melanogaster α-Esterase-7. Insect Biochemistry and Molecular Biology 42, 220–229. https://doi.org/10.1016/j.ibmb.2011.12.004

Bjarnholt, N., Nakonieczny, M., Kędziorski, A., Debinski, D.M., Matter, S.F., Olsen, C.E., Zagrobelny, M., 2012. Occurrence of Sarmentosin and Other Hydroxynitrile Glucosides in Parnassius (Papilionidae) Butterflies and Their Food Plants. J Chem Ecol 38, 525–537. https://doi.org/10.1007/s10886-012-0114-x

Blais C, Lafont R. 1986. Ecdysone 20-hydroxylation in imaginal wing discs of Pieris brassicae (Lepidoptera): correlations with ecdysone and 20-hydroxyecdysone titers in pupae. Arch. Insect Biochem. Physiol., 3, 501-512.

Blomquist GJ, Dillwith, JW, Pomonis, JG. 1984. Sex pheromone of the housefly. Metabolism of Z-9-tricosene to Z-9,10-epoxytricosane and Z-14-tricosen-10-one. Insect Biochem 14, 279-284.

Blomquist, G.J., Tittiger, C., MacLean, M., Keeling, C.I., 2021. Cytochromes P450: terpene detoxification and pheromone production in bark beetles. Current Opinion in Insect Science 43, 97–102. https://doi.org/10.1016/j.cois.2020.11.010

Boachon B, Burdloff Y, Ruan J-X, Rojo R, Junker RR, Vincent B, Nicolè F, Bringel F, Lesot A, Henry L, et al. 2019. A Promiscuous CYP706A3 Reduces Terpene Volatile Emission from Arabidopsis Flowers, Affecting Florivores and the Floral Microbiome. Plant Cell 31: 2947-2972

Bogwitz, M.R., Chung, H., Magoc, L., Rigby, S., Wong, W., O’Keefe, M., McKenzie, J.A., Batterham, P., Daborn, P.J., 2005. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences 102, 12807–12812. https://doi.org/10.1073/pnas.0503709102

Bollenbacher, W.E., Smith, S.L., Wielgus, J.J. and Gilbert, L.I. 1977. Evidence for an α-ecdysone cytochrome P-450 mixed function oxidase in insect fat body mitochondria. Nature, 268, 660-663.

Bomtorin, A.D., Mackert, A., Rosa, G.C.C., Moda, L.M., Martins, J.R., Bitondi, M.M.G., Hartfelder, K., Simões, Z.L.P., 2014. Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes. PLoS ONE 9, e86923. https://doi.org/10.1371/journal.pone.0086923

Bono, J.M., Matzkin, L.M., Castrezana, S., Markow, T.A., 2008. Molecular evolution and population genetics of two Drosophila mettleri cytochrome P450 genes involved in host plant utilization. Molecular Ecology 17, 3211–3221. https://doi.org/10.1111/j.1365-294X.2008.03823.x

Boonsuepsakul, S., Luepromchai, E., Rongnoparut, P., 2008. Characterization of Anopheles minimus CYP6AA3 expressed in a recombinant baculovirus system. Arch Insect Biochem Physiol.

Bouafoura, R., Bastarache, P., Ouédraogo, B.C., Dumas, P., Moffat, C.E., Vickruck, J.L., Morin, P.J., 2022. Characterization of Insecticide Response-Associated Transcripts in the Colorado Potato Beetle: Relevance of Selected Cytochrome P450s and Clothianidin. Insects 13, 505. https://doi.org/10.3390/insects13060505

Boutin, S., Alburaki, M., Mercier, P.-L., Giovenazzo, P., Derome, N., 2015. Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genomics 16, 500. https://doi.org/10.1186/s12864-015-1714-y

Bowers, W.S., Ohta, T., Cleere, J.S. and Marsella, P.A. 1976. Discovery of insect anti-juvenile hormones in plants. Science, 193, 542-7.

Bradfield J, Lee Y, Keeley L 1991 Cytochrome P450 family 4 in a cockroach: molecular cloning and regulation by regulation by hypertrehalosemic hormone. Proc Natl Acad Sci U S A. 88: 4558-4562.

Brandt, A., Scharf, M., Pedra, J.H., Holmes, G., Dean, A., Kreitman, M. and Pittendrigh, B.R. 2002. Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Mol. Biol., 11, 337-41.

Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, Gates MW, Kula RR, Brady SG. 2017. Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Curr Biol. 27:1019-1025. https://doi.org/10.1016/j.cub.2017.03.027

Brattsten LB 1979 Ecological significance of mixed-function oxidations. Drug Metabolism Reviews, 10, 35-58.

Brattsten LB 1979 Biochemical defense mechanisms in herbivores against plant allelochemicals. In: Herbivores, their interaction with secondary plant metabolites(ed. G.A. Rosenthal and D.H. Janzen), p. 199-270. Academic Press.

Brattsten, L.B. 1983. Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores. In: Plant resistance to insects(ed. P.A. Hedin), p. 173-195. American Chemical Society.

Brattsten, L.B. 1987. Sublethal virus infection depresses cytochrome P-450 in an insect. Experientia, 43, 451-454.

Brattsten LB, Metcalf RL 1970. The synergistic ratio of carbaryl with piperonyl butoxide as an indicator of the distribution of multifunction oxidases in the insecta. J. Econ. Entomol., 63, 101-4.

Brattsten, L., Wilkinson, C., 1977. Insecticide solvents: interference with insecticidal action. Science 196, 1211-1213.

Brattsten, L., Evans, C., Bonetti, S., Zalkow, L., 1984. Induction by carrot allelochemicals of insecticide-metabolising enzymes in the southern armyworm (Spodoptera eridania). Comp Biochem Physiol C 77, 29-37.

Brattsten LB, Wilkinson CF, Eisner T 1977. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances. Science, 196: 1349-1352.

Breeschoten, T., Ros, V.I.D., Schranz, M.E., Simon, S., 2019. An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). BMC Genomics 20, 845. https://doi.org/10.1186/s12864-019-6081-7

Breeschoten, T., Schranz, M.E., Poelman, E.H., Simon, S., 2022a. Family dinner: Transcriptional plasticity of five Noctuidae (Lepidoptera) feeding on three host plant species. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9258

Breeschoten, T., Van Der Linden, C.F.H., Ros, V.I.D., Schranz, M.E., Simon, S., 2022b. Expanding the Menu: Are Polyphagy and Gene Family Expansions Linked across Lepidoptera? Genome Biology and Evolution 14, evab283. https://doi.org/10.1093/gbe/evab283

Brindley, W.A. 1977. Synergist differences as an alternate interpretation of carbaryl-piperonyl butoxide toxicity data. Environ Entomol, 6, 885-888.

Brogdon, W.G., McAllister, J.C. and Vulule, J. 1997. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J. Am. Mosq. Control Assoc., 13, 233-237.

Brooks GT. 1979 The metabolism of xenobiotics in insects. In: Progress in drug metabolism (ed. J.W. Bridges and L. Chasseaud), p. 151-214. John Wiley & Son.

Brooks, G.T., Pratt, G.E., Mace, D.W. and Cocks, J.A. 1985. Inhibitors of juvenile hormone biosynthesis in corpora allata of the cockroach Periplaneta amaericana (L.) in vitro. Pesticide Science, 16, 132-142.

Brown, D., Zhang, L., Wen, Z., Scott, J., 2003. Induction of P450 monooxygenases in the German cockroach, Blattella germanica L. Arch Insect Biochem Physiol 53, 119-124.

Brown, R., McDonnell, C., Berenbaum, M., Schuler, M., 2005. Regulation of an insect cytochrome P450 monooxygenase gene (CYP6B1) by aryl hydrocarbon and xanthotoxin response cascades. Gene 358, 39-52.

Brown, T.M., Bryson, P.K. and Payne, G.T. 1996. Synergism by propynyl aryl ethers in permethrin-resistant tobacco budworm larvae. Pesticide Science, 46, 323-331.

Brückner, A., Badroos, J.M., Learsch, R.W., Yousefelahiyeh, M., Kitchen, S.A., Parker, J., 2021. Evolutionary assembly of cooperating cell types in an animal chemical defense system (preprint). Evolutionary Biology. https://doi.org/10.1101/2021.05.13.444042

Brückner, A., Raspotnig, G., Wehner, K., Meusinger, R., Norton, R.A., Heethoff, M., 2017. Storage and release of hydrogen cyanide in a chelicerate ( Oribatula tibialis ). Proc Natl Acad Sci USA 114, 3469–3472. https://doi.org/10.1073/pnas.1618327114

Brun-Barale, A., Héma, O., Martin, T., Suraporn, S., Audant, P., Sezutsu, H., Feyereisen, R., 2010. Multiple P450 genes overexpressed in deltamethrin-resistant strains of Helicoverpa armigera. Pest. Manag. Sci. n/a-n/a. https://doi.org/10.1002/ps.1960

Buckmann D. 1986. Isolation and identification of major ecdysteroids from the pycnogonid Pycnogonum litorale. Strom. Arthropoda, Pantopoda. J. Comp. Physiol. 156: 759-765

Bull, D.L., Ivie, G.W., Beier, R.C. and Pryor, N.W. 1986. In vitro metabolism of a linear furanocoumarin (8-methoxypsoralen, xanthotoxin) by mixed-function oxidases of larvae of black swallowtail butterfly and fall armyworm. J. Chem. Ecol., 12, 885-892.

Cabrera, A.R., Shirk, P.D., Evans, J.D., Hung, K., Sims, J., Alborn, H., Teal, P.E.A., 2015. Three Halloween genes from the Varroa mite, Varroa destructor (Anderson & Trueman) and their expression during reproduction: Varroa Mite Halloween genes. Insect Molecular Biology 24, 277–292. https://doi.org/10.1111/imb.12155

Calla, B., 2021. Signatures of selection and evolutionary relevance of cytochrome P450s in plant-insect interactions. Current Opinion in Insect Science 43, 92–96. https://doi.org/10.1016/j.cois.2020.11.014

Calla, B., Demkovich, M., Siegel, J.P., Viana, J.P.G., Walden, K.K.O., Robertson, H.M., Berenbaum, M.R., 2021. Selective Sweeps in a Nutshell: The Genomic Footprint of Rapid Insecticide Resistance Evolution in the Almond Agroecosystem. Genome Biology and Evolution 13, evaa234. https://doi.org/10.1093/gbe/evaa234

Calla, B., MacLean, M., Liao, L. ‐H., Dhanjal, I., Tittiger, C., Blomquist, G.J., Berenbaum, M.R., 2018. Functional characterization of CYP4G11—a highly conserved enzyme in the western honey bee Apis mellifera. Insect Mol Biol 27, 661–674. https://doi.org/10.1111/imb.12516

Calla, B., Noble, K., Johnson, R.M., Walden, K.K.O., Schuler, M.A., Robertson, H.M., Berenbaum, M.R., 2017. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Mol Ecol 26, 6021–6035. https://doi.org/10.1111/mec.14348

Calla, B., Wu, W. ‐Y., Dean, C.A.E., Schuler, M.A., Berenbaum, M.R., 2020. Substrate‐specificity of cytochrome P450‐mediated detoxification as an evolutionary strategy for specialization on furanocoumarin‐containing hostplants: CYP6AE89 in parsnip webworms. Insect Mol Biol 29, 112–123. https://doi.org/10.1111/imb.12612

Cano-Ramírez, C., López, M.F., Cesar-Ayala, A.K., Pineda-Martínez, V., Sullivan, B.T., Zúñiga, G., 2013. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes. Gene 520, 47–63. https://doi.org/10.1016/j.gene.2012.11.059

Cao, LJ, Song, W, Yue, L, Guo, SK, Chen, JC, Gong YJ, Hoffmann, A, Wei, SJ. 2021 Chromosome-level genome of the peach fruit moth Carposina sasakii Lepidoptera: Carposinidae provides a resource for evolutionary studies on moths. Mol Ecol Resour. 21: 834– 848. https://doi.org/10.1111/1755-0998.13288

Capdevila, J., Morello, A., Perry, A., Agosin, M., 1973. Effect of phenobarbital and naphthalene on some of the components of the electron transport system and the hydroxylating activity of house fly microsomes. Biochemistry 12, 1445-1451.

Carareto, C.M.A., Hernandez, E.H., Vieira, C., 2014. Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species. Gene 537, 93–99. https://doi.org/10.1016/j.gene.2013.11.080

Cardoso-Júnior, C.A.M., Silva, R.P., Borges, N.A., de Carvalho, W.J., Walter, S.L., Simões, Z.L.P., Bitondi, M.M.G., Ueira Vieira, C., Bonetti, A.M., Hartfelder, K., 2017. Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris. Journal of Insect Physiology 101, 185–194. https://doi.org/10.1016/j.jinsphys.2017.08.001

Cardoso-Moreira, M., Arguello, J.R., Gottipati, S., Harshman, L.G., Grenier, J.K., Clark, A.G., 2016. Evidence for the fixation of gene duplications by positive selection in Drosophila. Genome Res. 26, 787–798. https://doi.org/10.1101/gr.199323.115

Cariño, F.A., Koener, J.F., Plapp, F.W., Feyereisen, R., 1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochemistry and Molecular Biology 24, 411–418. https://doi.org/10.1016/0965-1748(94)90034-5

Cariño, F., Koener, J. F., Plapp, F. W., Jr., Feyereisen, R. 1992. Expression of the cytochrome P450 gene CYP6A1 in the housefly, Musca domestica. In Molecular mechanisms of insecticide resistance Mullin, C. A, and Scott, J. G., eds., pp. 31-40. American Chemical Society, Washington, DC.

Carr, A., D. Mitchell III, R., Dhammi, A., Bissinger, B.W., Sonenshine, D.E., Roe, R.M., 2017. Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects. IJMS 18, 1563. https://doi.org/10.3390/ijms18071563

Casida, J. E. 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J. Agric. Food Chem. 18, 753-771.

Catania, F., Kauer, M., Daborn, P., Yen, J., Ffrench-Constant, R., Schlotterer, C., 2004. World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Mol Ecol 13, 2491-2504.

Cattel, J., Faucon, F., Le Péron, B., Sherpa, S., Monchal, M., Grillet, L., Gaude, T., Laporte, F., Dusfour, I., Reynaud, S., David, J., 2020. Combining genetic crosses and pool targeted DNA‐seq for untangling genomic variations associated with resistance to multiple insecticides in the mosquito Aedes aegypti. Evol Appl 13, 303–317. https://doi.org/10.1111/eva.12867

Celorio‐Mancera, M.D.L.P., Heckel, D.G., Vogel, H., 2012. Transcriptional analysis of physiological pathways in a generalist herbivore: responses to different host plants and plant structures by the cotton bollworm, Helicoverpa armigera. Entomologia Exp Applicata 144, 123–133. https://doi.org/10.1111/j.1570-7458.2012.01249.x

Chabi, J., Edi, C.V.A., Kouassi, B.L., Gbalegba, C.N.G., Kouassi, A.E., Kouame, J.K.I., Kadio, Y.K.A., Yokoly, F.N., Golou, L.B., Gouaméné, J., Assamoi, J.-B., Tia, E., Yapo, R.M., Konan, L.Y., N’Tamon, R.N., Koffi, A.A., Tanoh, A.M., Ging-Cissé, N., Zinzindohoué, P., Kouadio, B., Yepassis-Zembrou, P.L., Irish, S.R., Flatley, C., Kirby, M., 2024. Level of involvement of four selected cytochrome P450s (CYPs) in pyrethroid-resistant Anopheles gambiae (s.s.) and Anopheles coluzzii across Côte d’Ivoire. Current Research in Parasitology & Vector-Borne Diseases 6, 100223. https://doi.org/10.1016/j.crpvbd.2024.100223

Chahine, S., O’Donnell, M.J., 2011. Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster. Journal of Experimental Biology 214, 462–468. https://doi.org/10.1242/jeb.048884

Chakraborty, M., Emerson, J.J., Macdonald, S.J., Long, A.D., 2019. Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat Commun 10, 4872. https://doi.org/10.1038/s41467-019-12884-1

Chakraborty, M., VanKuren, N.W., Zhao, R., Zhang, X., Kalsow, S., Emerson, J.J., 2018. Hidden genetic variation shapes the structure of functional elements in Drosophila. Nat Genet 50, 20–25. https://doi.org/10.1038/s41588-017-0010-y

Chambers, C.M., Dotson, E.M., Oliver, J.H.Jr. 1996. Ecdysteroid titers during postembryonic development of Dermanyssus gallinae (Acari:Dermanyssidae). J. Medical Entomology. 33, 11-14.

Chan, H.H., Wajidi, M.F.F., Zairi, J., 2014. Molecular Cloning and Xenobiotic Induction of Seven Novel Cytochrome P450 Monooxygenases in Aedes albopictus. Journal of Insect Science 14. https://doi.org/10.1093/jisesa/ieu025

Chan, Q.W.T., Chan, M.Y., Logan, M., Fang, Y., Higo, H., Foster, L.J., 2013. Honey bee protein atlas at organ-level resolution. Genome Res. 23, 1951–1960. https://doi.org/10.1101/gr.155994.113

Chandor-Proust, A., Bibby, J., Régent-Kloeckner, M., Roux, J., Guittard-Crilat, E., Poupardin, R., Riaz, M.A., Paine, M., Dauphin-Villemant, C., Reynaud, S., David, J.-P., 2013. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochemical Journal 455, 75–85. https://doi.org/10.1042/BJ20130577

Chase, J., Touhara, K., Prestwich, G.D., Schal, C., Blomquist, G.J., 1992. Biosynthesis and endocrine control of the production of the German cockroach sex pheromone 3,11-dimethylnonacosan-2-one. Proceedings of the National Academy of Sciences 89, 6050–6054. https://doi.org/10.1073/pnas.89.13.6050

Chauhan, R., Jones, R., Wilkinson, P., Pauchet, Y., ffrench‐Constant, R.H., 2013. Cytochrome P 450‐encoding genes from the H eliconius genome as candidates for cyanogenesis. Insect Molecular Biology 22, 532–540. https://doi.org/10.1111/imb.12042

Chavez, V. M, Marques, G., Delbecque, J. P., Kobayashi, K., Hollingsworth, M, Burr, J., Natzle, J. E., O'Connor, MB 2000. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 127, 4115-26.

Cheesman, M.J., Traylor, M.J., Hilton, M.E., Richards, K.E., Taylor, M.C., Daborn, P.J., Russell, R.J., Gillam, E.M.J., Oakeshott, J.G., 2013. Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in Escherichia coli: Purification, activity, and binding properties toward multiple pesticides. Insect Biochemistry and Molecular Biology 43, 455–465. https://doi.org/10.1016/j.ibmb.2013.02.003

Chen, A., Zhang, H., Shan, T., Shi, X., Gao, X., 2020. The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon/cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology 167, 104601. https://doi.org/10.1016/j.pestbp.2020.104601

Chen, C., Berry, R., Shokhireva, T., Murataliev, M., Zhang, H., Walker, F., 2010. Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. J Biol Inorg Chem 15, 159-174.

Chen, C., Pi, W., Zhang, Y., Nie, C., Liang, J., Ma, X., Wang, Y., Ge, W., Zhang, W., 2019. Effect of a functional recombinant cytochrome P450 enzyme of Helicoverpa armigera on gossypol metabolism co-expressed with NADPH-cytochrome P450 reductase in Pichia pastoris. Pesticide Biochemistry and Physiology 155, 15–25. https://doi.org/10.1016/j.pestbp.2019.01.003

Chen, C., Shan, T., Liu, Y., Shi, X., Gao, X., 2019a. Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga. Pest Manag Sci. 75,1006-1013. https://doi.org/10.1002/ps.5208

Chen, C., Shan, T., Liu, Y., Wang, C., Shi, X., Gao, X., 2019b. Identification and functional analysis of a cytochrome P450 gene involved in imidacloprid resistance in Bradysia odoriphaga Yang et Zhang. Pesticide Biochemistry and Physiology 153, 129–135. https://doi.org/10.1016/j.pestbp.2018.11.009

Chen, C., Shokhireva, T., Berry, R., Zhang, H., Walker, F., 2008. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. J Biol Inorg Chem 13, 813-824.

Chen, C., Wang, C., Liu, Y., Shan, T., Shi, X., Gao, X., 2022. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals P450 genes involved in thiamethoxam detoxification in Bradysia odoriphaga. Pesticide Biochemistry and Physiology 186, 105176. https://doi.org/10.1016/j.pestbp.2022.105176

Chen, C., Wang, C., Liu, Y., Shi, X., Gao, X., 2018. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci Rep 8, 2564. https://doi.org/10.1038/s41598-018-20981-2

Chen CD, Doray B, Kemper B 1998. A conserved proline-rich sequence between the N-terminal signal-anchor and catalytic domains is required for assembly of functional cytochrome P450 2C2. Arch Biochem Biophys 350, 233-8.

Chen, C.-K.J., Shokhireva, T.Kh., Berry, R.E., Zhang, H., Walker, F.A., 2008. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. J Biol Inorg Chem 13, 813–824. https://doi.org/10.1007/s00775-008-0368-5

Chen, D.-B., Xia, R.-X., Li, Q., Li, Y.-P., Cao, H.-Y., Liu, Y.-Q., 2023. Genome-Wide Identification of Detoxification Genes in Wild Silkworm Antheraea pernyi and Transcriptional Response to Coumaphos. IJMS 24, 9775. https://doi.org/10.3390/ijms24119775

Chen, H., Chen, C., Yu, Z., Silver, K., Campbell, J.F., Arthur, F.H., Huang, Y., Hu, F., Zhu, K.Y., 2022a. Comparative analyses of six cytochrome P450 genes and their roles in differential insecticide susceptibilities between the red flour beetle and the confused flour beetle. Journal of Stored Products Research 96, 101951. https://doi.org/10.1016/j.jspr.2022.101951

Chen, H., Lin, L., Ali, F., Xie, M., Zhang, G., Su, W., 2017. Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. IJMS 18, 2445. https://doi.org/10.3390/ijms18112445

Chen, H., Xie, M., Lin, L., Zhong, Y., Zhang, F., Su, W., 2022b. Transcriptome Analysis of Detoxification-Related Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Insect Science 22, 11. https://doi.org/10.1093/jisesa/ieab108

Chen, H.-L., Hasnain, A., Cheng, Q.-H., Xia, L.-J., Cai, Y.-H., Hu, R., Gong, C.-W., Liu, X.-M., Pu, J., Zhang, L., Wang, X.-G., 2023. Resistance monitoring and mechanism in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) for chlorantraniliprole from Sichuan Province, China. Front. Physiol. 14, 1180655. https://doi.org/10.3389/fphys.2023.1180655

Chen JS, Berenbaum MR, Schuler MA. 2002. Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase. Insect Mol. Biol., 11: 175-86.

Chen, L., Song, J., Wang, J., Ye, M., Deng, Q., Wu, Xiaobao, Wu, Xiaoyi, Ren, B., 2023. Effects of Methyl Jasmonate Fumigation on the Growth and Detoxification Ability of Spodoptera litura to Xanthotoxin. Insects 14, 145. https://doi.org/10.3390/insects14020145

Chen, L., Yu, X., Xue, X., Zhang, F., Guo, L., Zhang, H., Hoffmann, A.A., Hong, X., Sun, J., 2023. The genome sequence of a spider mite, Tetranychus truncatus , provides insights into interspecific host range variation and the genetic basis of adaptation to a low‐quality host plant. Insect Science 1744-7917.13212. https://doi.org/10.1111/1744-7917.13212

Chen, L., Zhang, T., Ge, M., Liu, Y., Xing, Y., Liu, L., Li, F., Cheng, L., 2020. The Nrf2-Keap1 pathway: A secret weapon against pesticide persecution in Drosophila Kc cells. Pesticide Biochemistry and Physiology 164, 47–57. https://doi.org/10.1016/j.pestbp.2019.12.008

Chen, N., Fan, Y.-L., Bai, Y., Li, X., Zhang, Z.-F., Liu, T.-X., 2016. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum. Insect Biochemistry and Molecular Biology 76, 84–94. https://doi.org/10.1016/j.ibmb.2016.07.006

Chen, N., Pei, X., Li, S., Fan, Y., Liu, T., 2020. Involvement of integument‐rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L.). Pest. Manag. Sci. 76, 215–226. https://doi.org/10.1002/ps.5499

Chen, Q., Li, Y., Fang, Z., Wu, Q., Tan, L., Weng, Q., 2024. CYP4BN4v7 regulates the population density dependent oocyte maturity rate in bean beetles. Sci Rep 14, 28574. https://doi.org/10.1038/s41598-024-79866-2 [this gene is not CYP4BN4 but CYP4NQ26]

Chen, Q., Zhao, H., Wen, M., Li, J., Zhou, H., Wang, J., Zhou, Y., Liu, Y., Du, L., Kang, H., Zhang, J., Cao, R., Xu, X., Zhou, J.-J., Ren, B., Wang, Y., 2020. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. BMC Genomics 21, 242. https://doi.org/10.1186/s12864-020-6629-6

Chen, S., Elzaki, M.E.A., Ding, C., Li, Z., Wang, J., Zeng, R., Song, Y.-Y., 2019. Plant allelochemicals affect tolerance of polyphagous lepidopteran pest Helicoverpa armigera (Hübner) against insecticides. Pesticide Biochemistry and Physiology 154, 32–38. https://doi.org/10.1016/j.pestbp.2018.12.009

Chen, S., Li, X., 2007. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol 7, 46. https://doi.org/10.1186/1471-2148-7-46

Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH. 2014. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol. 6:1620-34. https://doi.org/ 10.1093/gbe/evu132

Chen, W., Li, Z., Zhou, C., Ali, A., Ali, S., Wu, J., 2023. RNA interference in cytochrome P450 monooxygenase (CYP) gene results in reduced insecticide resistance in Megalurothrips usitatus Bagnall. Front. Physiol. 14, 1130389. https://doi.org/10.3389/fphys.2023.1130389

Chen, X., Palli, S.R., 2021. Transgenic overexpression of P450 genes confers deltamethrin resistance in the fall armyworm, Spodoptera frugiperda. J Pest Sci. https://doi.org/10.1007/s10340-021-01452-6

Chen, X., Zhang, Y., 2015. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b5 gene from Plutella xylostella: Possible involvement in resistance to beta-cypermethrin. Gene 558, 208–214. https://doi.org/10.1016/j.gene.2014.12.053

Chen, Y., Cen, Y., Liu, Y., Peng, Y., Lin, Y., Feng, Q., Xiao, Y., Zheng, S., 2024. P450 gene CYP321A8 is responsible for cross‐resistance of insecticides in field populations of Spodoptera frugiperda. Insect Science 1744-7917.13376. https://doi.org/10.1111/1744-7917.13376

Chen Z, Ost TWB, Schelvis JPM 2004. Phe393 mutants of cytochrome P450 BM3 with modified heme redox potentials have altered heme vinyl and propionate conformations. Biochemistry 43: 1798-1808

Cheng, L.-Y., Hou, D.-Y., Sun, Q.-Z., Yu, S.-J., Li, S.-C., Liu, H.-Q., Cong, L., Ran, C., 2022. Biochemical and Molecular Analysis of Field Resistance to Spirodiclofen in Panonychus citri (McGregor). Insects 13, 1011. https://doi.org/10.3390/insects13111011

Cheng, Y., Li, Y., Li, W., Song, Y., Zeng, R., Lu, K., 2021. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes. Chemosphere 263, 128269. https://doi.org/10.1016/j.chemosphere.2020.128269

Cheng, Z., Huang, Z., Yan, B., Huang, X., Mei, Y., 2024. Comprehensive Transcriptomic Analysis of Spodoptera frugiperda Reveals Stage-Specific Gene Expression and P450-Mediated Adaptation Mechanisms. Agronomy 14, 3054. https://doi.org/10.3390/agronomy14123054

Chertemps, T., Le Goff, G., Maïbèche, M., Hilliou, F., 2021. Detoxification gene families in Phylloxera: Endogenous functions and roles in response to the environment. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 40, 100867. https://doi.org/10.1016/j.cbd.2021.100867

Chertemps, T., Maïbèche, M., 2021. Odor degrading enzymes and signal termination, in: Insect Pheromone Biochemistry and Molecular Biology. Elsevier, pp. 619–644. https://doi.org/10.1016/B978-0-12-819628-1.00019-5

Chiu, C.C., Keeling, C.I., Bohlmann, J., 2019a. The cytochrome P450 CYP6DE1 catalyzes the conversion of α-pinene into the mountain pine beetle aggregation pheromone trans-verbenol. Sci Rep 9, 1477. https://doi.org/10.1038/s41598-018-38047-8

Chiu, C.C., Keeling, C.I., Henderson, H.M., Bohlmann, J., 2019b. Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS ONE 14, e0216753. https://doi.org/10.1371/journal.pone.0216753

Chiu, T., Wen, Z., Rupasinghe, S., Schuler, M., 2008. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci U S A 105, 8855-8860.

Choi, B.-S., Kim, D.-H., Kim, M.-S., Park, J.C., Lee, Y.H., Kim, H.-J., Jeong, C.-B., Hagiwara, A., Souissi, S., Lee, J.-S., 2021. The genome of the European estuarine calanoid copepod Eurytemora affinis: Potential use in molecular ecotoxicology. Marine Pollution Bulletin 166, 112190. https://doi.org/10.1016/j.marpolbul.2021.112190

Christesen, D., Yang, Y.T., Somers, J., Robin, C., Sztal, T., Batterham, P., Perry, T., 2017. Transcriptome Analysis of Drosophila melanogaster Third Instar Larval Ring Glands Points to Novel Functions and Uncovers a Cytochrome p450 Required for Development. G3 Genes|Genomes|Genetics 7, 467–479. https://doi.org/10.1534/g3.116.037333

Christian, M., Yu, S., 1986. Cytochrome P-450-dependent monooxygenase activity in the velvetbean caterpillar, Anticarsia gemmatalis Hubner. Comp Biochem Physiol C 83, 23-27.

Christian, R.N., Strode, C., Ranson, H., Coetzer, N., Coetzee, M., Koekemoer, L.L., 2011. Microarray analysis of a pyrethroid resistant African malaria vector, Anopheles funestus, from southern Africa. Pesticide Biochemistry and Physiology 99, 140–147. https://doi.org/10.1016/j.pestbp.2010.11.010

Chung, H., Boey, A., Lumb, C., Willoughby, L., Batterham, P., Daborn, P.J., 2011. Induction of a detoxification gene in Drosophila melanogaster requires an interaction between tissue specific enhancers and a novel cis-regulatory element. Insect Biochemistry and Molecular Biology 41, 863–871. https://doi.org/10.1016/j.ibmb.2011.07.002

Chung, H., Bogwitz, M.R., McCart, C., Andrianopoulos, A., ffrench-Constant, R.H., Batterham, P., Daborn, P.J., 2007. Cis -Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1. Genetics 175, 1071–1077. https://doi.org/10.1534/genetics.106.066597

Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., Daborn, P.J., 2009. Characterization of Drosophila melanogaster cytochrome P450 genes. Proceedings of the National Academy of Sciences 106, 5731–5736. https://doi.org/10.1073/pnas.0812141106

Cianfrogna, J.A., Zangerl, A.R. and Berenbaum, M.R. 2002. Dietary and developmental influences on induced detoxification in an oligophage. J. Chem. Ecol., 28, 1349-1364.

Cifuentes, D., Chynoweth, R., Guillén, J., De La Rúa, P., Bielza, P., 2012. Novel Cytochrome P450 Genes, CYP6EB1 and CYP6EC1, Are Over-Expressed in Acrinathrin-Resistant Frankliniella occidentalis (Thysanoptera: Thripidae). jnl. econ. entom. 105, 1006–1018. https://doi.org/10.1603/EC11335

Cilek, J.E., Dahlman, D.L. and Knapp, F.W. 1995. Possible mechanism of diazinon negative cross-resistance in pyrethroid-resistant horn flies (Diptera: Muscidae). J. Econ. Entomol., 88, 520-524.

Clarkson, C.S., Temple, H.J., Miles, A., 2018. The genomics of insecticide resistance: insights from recent studies in African malaria vectors. Current Opinion in Insect Science 27, 111–115. https://doi.org/10.1016/j.cois.2018.05.017

Claudianos, C., Ranson, H., Johnson, R.M., Biswas, S., Schuler, M.A., Berenbaum, M.R., Feyereisen, R., Oakeshott, J.G., 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology 15, 615-6-36. https://doi.org/10.1111/j.1365-2583.2006.00672.x.

Claudius, A.-K., Romani, P., Lamkemeyer, T., Jindra, M., Uhlirova, M., 2014. Unexpected Role of the Steroid-Deficiency Protein Ecdysoneless in Pre-mRNA Splicing. PLoS Genet 10, e1004287. https://doi.org/10.1371/journal.pgen.1004287

Clements, J., Schoville, S., Peterson, N., Huseth, A.S., Lan, Q., Groves, R.L., 2017. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology 135, 35–40. https://doi.org/10.1016/j.pestbp.2016.07.001

Coelho, A., Fraichard, S., Le Goff, G., Faure, P., Artur, Y., Ferveur, J.-F., Heydel, J.-M., 2015. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster. PLoS ONE 10, e0117328. https://doi.org/10.1371/journal.pone.0117328

Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A, Arnold FH, Brustad EM 2013. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat Chem Biol 9: 485-487

Cohen, M.B., Feyereisen, R., 1995. A Cluster of Cytochrome P450 Genes of the CYP6 Family in the House Fly. DNA and Cell Biology 14, 73–82. https://doi.org/10.1089/dna.1995.14.73

Cohen, M.B., Berenbaum, M.R. and Schuler, M.A. 1989. Induction of cytochome P450-mediated detoxification of xanthotoxin in the black swallowtail. J. Chem. Ecol., 15, 2347-2355.

Cohen, MB, Schuler, MA, Berenbaum, MR. 1992. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc Natl Acad Sci U S A 89, 10920-4.

Cohen, M.B., Koener, J.F., Feyereisen, R., 1994. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly. Gene 146, 267–272. https://doi.org/10.1016/0378-1119(94)90304-2

Cohen, Z.P., Schoville, S.D., Hawthorne, D.J., 2023. The role of structural variants in pest adaptation and genome evolution of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Molecular Ecology mec.16838. https://doi.org/10.1111/mec.16838

Collins, P.J., Hooper, G.H.S., 1984. The microsomal mixed-function oxidase system of Heliothis punctiger Wallengren and H. Armiger (Hübner) (Lepidoptera: Noctuidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 77, 849–855. https://doi.org/10.1016/0305-0491(84)90323-7

Conlon, B.H., Aurori, A., Giurgiu, A., Kefuss, J., Dezmirean, D.S., Moritz, R.F.A., Routtu, J., 2019. A gene for resistance to the Varroa mite (Acari) in honey bee ( Apis mellifera ) pupae. Mol Ecol 28, 2958–2966. https://doi.org/10.1111/mec.15080

Cornette, R., Koshikawa, S., Hojo, M., Matsumoto, T., Miura, T., 2006. Caste-specific cytochrome P450 in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). Insect Mol Biol 15, 235-244

Couillaud, F., Debernard, S., Darrouzet, E., Rossignol, F. 1996. Hidden face of juvenile hormone metabolism in the African locust. Arch Insect Biochem Physiol 32, 387-397.

Crampton, A.L., Baxter, G.D. and Barker, S.C. 1999. Identification and characterisation of a cytochrome P450 gene and processed pseudogene from an arachnid: the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol., 29, 377-84.

Crampton, A.L., Baxter, G.D., Barker, S.C., 1999. A new family of cytochrome P450 genes (CYP41) from the cattle tick, Boophilus microplus. Insect Biochemistry and Molecular Biology 29, 829-834.

Crankshaw, D., Hetnarski, H., Wilkinson, C., 1979. Microsomal nadph-cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania). Insect Biochemistry 9, 49-54.

Crankshaw, D. L., Hetnarski, K., Wilkinson, C. F. 1981. The functional role of NADPH-cytochrome c reductase in southern armyworm Spodoptera eridania midgut microsomes. Insect Biochemistry 11, 515-522.

Crankshaw, D., Hetnarski, H., Wilkinson, C., 1981. Interspecies cross-reactivity of an antibody to southern armyworm (Spodoptera eridania) midgut nadph-cytochrome C reductase. Insect Biochemistry 11, 593-597.

Crossley, M.S., Chen, Y.H., Groves, R.L., Schoville, S.D., 2017. Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Mol Ecol 26, 6284–6300. https://doi.org/10.1111/mec.14339

Cuany, A., Pralavorio, M., Pauron, D., Berge, J.B., Fournier, D., Blais, C., Lafont, R., Salaun, J.P., Weissbart, D., Larroque, C. and Lange, R. 1990. Characterization of microsomal oxidative activities in a wild-type and in a DDT resistant strain of Drosophila melanogaster. Pestic. Biochem. Physiol., 37, 293-302.

d’Alençon, E., Sezutsu, H., Legeai, F., Permal, E., Bernard-Samain, S., Gimenez, S., Gagneur, C., Cousserans, F., Shimomura, M., Brun-Barale, A., Flutre, T., Couloux, A., East, P., Gordon, K., Mita, K., Quesneville, H., Fournier, P., Feyereisen, R., 2010. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci USA 107, 7680–7685. https://doi.org/10.1073/pnas.0910413107

Daborn, P., Boundy, S., Yen, J., Pittendrigh, B. and ffrench-Constant, R. 2001. DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics, 266, 556-63.

Daborn, P. J., Yen, J. L., Bogwitz, MR., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T. G., ffrench-Constant, R. H. 2002. A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science 297, 2253–2256. https://doi.org/10.1126/science.1074170

Daborn, P.J., Lumb, C., Boey, A., Wong, W., ffrench-Constant, R.H., Batterham, P., 2007. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology 37, 512–519. https://doi.org/10.1016/j.ibmb.2007.02.008

Daborn, P.J., Lumb, C., Harrop, T.W.R., Blasetti, A., Pasricha, S., Morin, S., Mitchell, S.N., Donnelly, M.J., Müller, P., Batterham, P., 2012. Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. Insect Biochemistry and Molecular Biology 42, 918–924. https://doi.org/10.1016/j.ibmb.2012.09.003

Dai, L., Ma, M., Gao, G., Chen, H., 2016. Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 201, 1–11. https://doi.org/10.1016/j.cbpb.2016.06.006

Dai, W., Zhu, B., Tuinen, M. van, Zhu, T., Shang, D., Almeida, P., Liang, P., Ullah, H., Ban, L., 2022. Genome-Wide Scans and Transcriptomic Analyses Characterize Selective Changes as a Result of Chlorantraniliprole Resistance in Plutella xylostella. IJMS 23, 12245. https://doi.org/10.3390/ijms232012245

Dai, W.-T., Li, J., Ban, L.-P., 2021. Genome-Wide Selective Signature Analysis Revealed Insecticide Resistance Mechanisms in Cydia pomonella. Insects 13, 2. https://doi.org/10.3390/insects13010002

Daimon, T., Kozaki, T., Niwa, R., Kobayashi, I., Furuta, K., Namiki, T., Uchino, K., Banno, Y., Katsuma, S., Tamura, T., Mita, K., Sezutsu, H., Nakayama, M., Itoyama, K., Shimada, T., Shinoda, T., 2012. Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori. PLoS Genet 8, e1002486. https://doi.org/10.1371/journal.pgen.1002486

Daimon, T., Shinoda, T., 2013. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotech and App Biochem 60, 82–91. https://doi.org/10.1002/bab.1058

Danielson, P., Fogleman, J., 1997. Isolation and sequence analysis of cytochrome P450 12B1: the first [sic] mitochondrial insect P450 with homology to 1 alpha,25 dihydroxy-D3 24- hydroxylase. Insect Biochem Mol Biol 27, 595-604.

Danielson, P.B., Frank, M.R., Fogleman, J.C., 1994. Comparison of larval and adult P-450 activity levels for alkaloid metabolism in desert Drosophila. J Chem Ecol 20, 1893-1906.

Danielson, P.B., Letman, J.A. and Fogleman, J.C. 1995. Alkaloid metabolism by cytochrome P-450 enzymes in Drosophila melanogaster. Comp. Biochem. Physiol., 110B, 683-688.

Danielson, P.B., MacIntyre, R.J. and Fogleman, J.C. 1997. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: evidence for involvement in host-plant allelochemical resistance. Proc. Natl. Acad. Sci. USA, 94, 10797-802.

Danielson, P.B., Foster, J.L., McMahill, M.M., Smith, M.K. and Fogleman, J.C. 1998. Induction by alkaloids and phenobarbital of Family 4 Cytochrome P450s in Drosophila: evidence for involvement in host plant utilization. Mol Gen Genet, 259, 54-9.

Danielson, P.B., Foster, J.L., Cooper, S.K. and Fogleman, J.C. 1999. Diversity of expressed cytochrome P450 genes in the adult Mediterranean Fruit Fly, Ceratitis capitata. Insect Mol. Biol., 8, 149-59.

Darragh, K., Nelson, D.R., Ramírez, S.R., 2021. The Birth-and-Death Evolution of Cytochrome P450 Genes in Bees. Genome Biology and Evolution 13, evab261. https://doi.org/10.1093/gbe/evab261

Darrouzet, E., Mauchamp, B, Prestwich, G. D., Kerhoas, L., Ujvary, I., Couillaud, F. 1997. Hydroxy juvenile hormones: new putative juvenile hormones biosynthesized by locust corpora allata in vitro. Biochem Biophys Res Commun 240, 752-8.

Darvas, B., Rees, H.H. and Hoggard, N. 1993. Ecdysone 20-monooxygenase systems in flesh-flies (Diptera: Sarcophagidae), Neobellieria bullata and Parasarcophaga argyrostoma. Comp. Biochem. Physiol., 105B, 765-773.

Darvas, B., Rees, H., Hoggard, N., Tag El-Din, M.H., Kuwano, E., Belai, I., Timar, T., 1992. Cytrochrome P-450 inducers and inhibitors interfering with ecdysone 20-monooxygenases and their activities during postembryonic development of Neobellieria bullata Parker. Pestic Sci 36, 135-142.

Dauphin-Villemant C, Bocking D, Tom M, Maibeche M, Lafont R 1999 Cloning of a novel cytochrome P450 CYP4C15 differentially expressed in the steroidogenic glands of an arthropod. Biochem Biophys Res Commun. 264: 413-418.

David, J., Boyer, S., Mesneau, A., Ball, A., Ranson, H., Dauphin-Villemant, C., 2006. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochem Mol Biol 36, 410-420.

David, J., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P., Louis, C., Hemingway, J., Ranson, H., 2005. The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A 102, 4080-4084.

David, J.-P., Faucon, F., Chandor-Proust, A., Poupardin, R., Riaz, M., Bonin, A., Navratil, V., Reynaud, S., 2014. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics 15, 174. https://doi.org/10.1186/1471-2164-15-174

David, J.-P., Ismail, H.M., Chandor-Proust, A., Paine, M.J.I., 2013. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Phil. Trans. R. Soc. B 368, 20120429. https://doi.org/10.1098/rstb.2012.0429

David, M.D., 2021. The potential of pro‐insecticides for resistance management. Pest Manag Sci ps.6369. https://doi.org/10.1002/ps.6369

Davies, L., Williams, D., Aguiar-Santana, I., Pedersen, J., Turner, P., Rees, H., 2006. Expression and down-regulation of cytochrome P450 genes of the CYP4 family by ecdysteroid agonists in Spodoptera littoralis and Drosophila melanogaster. Insect Biochem Mol Biol 36, 801-807.

Davies, L., Williams, D., Turner, P., Rees, H., 2006. Characterization in relation to development of an ecdysteroid agonist-responsive cytochrome P450, CYP18A1, in Lepidoptera. Arch Biochem Biophys 453, 4-12.

Dauphin-Villemant, C., Böcking, D., Tom, M., Maı̈bèche, M., Lafont, R., 1999. Cloning of a Novel Cytochrome P450 (CYP4C15) Differentially Expressed in the Steroidogenic Glands of an Arthropod. Biochemical and Biophysical Research Communications 264, 413–418. https://doi.org/10.1006/bbrc.1999.1363

Davis, R.H. and Nahrstedt, A. 1987. Biosynthesis of cyanogenic glucosides in butterflies and moths. Insect Biochem., 17, 689-693.

Dawkar, V.V., Chikate, Y.R., More, T.H., Gupta, V.S., Giri, A.P., 2016. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide: H. armigera regulates proteins upon CH exposure. Insect Science 23, 68–77. https://doi.org/10.1111/1744-7917.12177

De Beer, B., Vandenhole, M., Njiru, C., Spanoghe, P., Dermauw, W., Van Leeuwen, T., 2022. High-Resolution Genetic Mapping Combined with Transcriptome Profiling Reveals That Both Target-Site Resistance and Increased Detoxification Confer Resistance to the Pyrethroid Bifenthrin in the Spider Mite Tetranychus urticae. Biology 11, 1630. https://doi.org/10.3390/biology11111630

de Jong, M.A., Wong, S.C., Lehtonen, R., Hanski, I., 2014. Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly. Mol Ecol 23, 1994–2005. https://doi.org/10.1111/mec.12697

De Marco, L., Sassera, D., Epis, S., Mastrantonio, V., Ferrari, M., Ricci, I., Comandatore, F., Bandi, C., Porretta, D., Urbanelli, S., 2017. The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq. Sci Rep 7, 41312. https://doi.org/10.1038/srep41312

De Panis, D.N., Padró, J., Furió-Tarí, P., Tarazona, S., Milla Carmona, P.S., Soto, I.M., Dopazo, H., Conesa, A., Hasson, E., 2016. Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila. Mol Ecol 25, 4534–4550. https://doi.org/10.1111/mec.13785

de Sousa, G., Cuany, A., Brun, A., Amichot, M., Rahmani, R. and Berge, J.B. 1995. A microfluorometric method for measuring ethoxycoumarin-O-deethylase activity on individual Drosophila melanogaster abdomens: interest for screening resistance in insect populations. Anal Biochem, 229, 86-91.

De Wit, P., Yamada, K., Panova, M., André, C., Johannesson, K., 2018. Diet-dependent gene expression highlights the importance of Cytochrome P450 in detoxification of algal secondary metabolites in a marine isopod. Sci Rep 8, 16824. https://doi.org/10.1038/s41598-018-34937-z

Demaeght, P., Dermauw, W., Tsakireli, D., Khajehali, J., Nauen, R., Tirry, L., Vontas, J., Lümmen, P., Van Leeuwen, T., 2013. Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochemistry and Molecular Biology 43, 544–554. https://doi.org/10.1016/j.ibmb.2013.03.007

Dembeck, L.M., Böröczky, K., Huang, W., Schal, C., Anholt, R.R.H., Mackay, T.F.C., 2015. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife 4, e09861. https://doi.org/10.7554/eLife.09861

Demkovich, M.R., Calla, B., Ngumbi, E., Higbee, B.S., Siegel, J.P., Berenbaum, M.R., 2021. Differential regulation of cytochrome P450 genes associated with biosynthesis and detoxification in bifenthrin-resistant populations of navel orangewom (Amyelois transitella). PLoS ONE 16, e0245803. https://doi.org/10.1371/journal.pone.0245803

Denecke, S., Fusetto, R., Martelli, F., Giang, A., Battlay, P., Fournier-Level, A., O’ Hair, R.A., Batterham, P., 2017. Multiple P450s and Variation in Neuronal Genes Underpins the Response to the Insecticide Imidacloprid in a Population of Drosophila melanogaster. Sci Rep 7, 11338. https://doi.org/10.1038/s41598-017-11092-5

Denecke, S., Ioannidis, P., Buer, B., Ilias, A., Douris, V., Topalis, P., Nauen, R., Geibel, S., Vontas, J., 2020. A transcriptomic and proteomic atlas of expression in the Nezara viridula (Heteroptera: Pentatomidae) midgut suggests the compartmentalization of xenobiotic metabolism and nutrient digestion. BMC Genomics 21, 129. https://doi.org/10.1186/s12864-020-6459-6

Deng, H., 2014. Multiple roles of Nrf2-Keap1 signaling: Regulation of development and xenobiotic response using distinct mechanisms. Fly 8, 7–12. https://doi.org/10.4161/fly.27007

Deng, H., Kerppola, T.K., 2014. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation. Development 141, 3277–3288. https://doi.org/10.1242/dev.110528

Deng, H., Kerppola, T.K., 2013. Regulation of Drosophila Metamorphosis by Xenobiotic Response Regulators. PLoS Genet 9, e1003263. https://doi.org/10.1371/journal.pgen.1003263

Deng, Z., Zhang, Y., Fang, L., Zhang, M., Wang, L., Ni, X., Li, X., 2023. Identification of the Flavone-Inducible Counter-Defense Genes and Their cis-Elements in Helicoverpa armigera. Toxins 15, 365. https://doi.org/10.3390/toxins15060365

Dermauw, W., Pym, A., Bass, C., Van Leeuwen, T., Feyereisen, R., 2018. Does host plant adaptation lead to pesticide resistance in generalist herbivores? Current Opinion in Insect Science 26, 25–33. https://doi.org/10.1016/j.cois.2018.01.001

Dermauw, W., Van Leeuwen, T., Feyereisen, R., 2020. Diversity and evolution of the P450 family in arthropods. Insect Biochemistry and Molecular Biology 127, 103490. https://doi.org/10.1016/j.ibmb.2020.103490

Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbic, M., Clark, R.M., Feyereisen, R., Van Leeuwen, T., 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences 110, E113–E122. https://doi.org/10.1073/pnas.1213214110

DeSalvo, M.K., Hindle, S.J., Rusan, Z.M., Orng, S., Eddison, M., Halliwill, K., Bainton, R.J., 2014. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Front. Neurosci. 8. https://doi.org/10.3389/fnins.2014.00346

Descamps M, Lafont R. 1993. Conversion of Different Putative Ecdysteroid Precursors in Lithobius forficatus L.Myriapoda: Chilopoda. Insect Biochemistry and Molecular Biology 23: 481-489

Di Nardo G, Gilardi G. 2020. Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends in Biochemical Sciences 45: 511-525

Di Nardo, G., Zhang, C., Marcelli, A.G., Gilardi, G., 2021. Molecular and Structural Evolution of Cytochrome P450 Aromatase. IJMS 22, 631. https://doi.org/10.3390/ijms22020631

Dierick H, Greenspan R. 2006. Molecular analysis of flies selected for aggressive behavior. Nat Genet 38: 1023-1031

Ding Y, Li J, Yan K, Jin L, Fan C, Bi R, Kong H, Pan Y, Shang Q. 2024. CF2-II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. J Agric Food Chem. 72, 3406-3414. https://doi.org/10.1021/acs.jafc.3c08770

Ding, Y., Lv, Y., Pan, Y., Li, J., Yan, K., Yu, Z., Shang, Q., 2023. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. International Journal of Biological Macromolecules 253, 126824. https://doi.org/10.1016/j.ijbiomac.2023.126824

Ding, Z., Wen, Y., Yang, B., Zhang, Y., Liu, S., Liu, Z., Han, Z., 2013. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: Over-expression of cytochrome P450 CYP6AY1. Insect Biochemistry and Molecular Biology 43, 1021–1027. https://doi.org/10.1016/j.ibmb.2013.08.005

Djègbè, I., Agossa, F.R., Jones, C.M., Poupardin, R., Cornelie, S., Akogbéto, M., Ranson, H., Corbel, V., 2014. Molecular characterization of DDT resistance in Anopheles gambiae from Benin. Parasit Vectors 7, 409. https://doi.org/10.1186/1756-3305-7-409

Djoko Tagne, C.S., Kouamo, M.F.M., Tchouakui, M., Muhammad, A., Mugenzi, L.J.L., Tatchou-Nebangwa, N.M.T., Thiomela, R.F., Gadji, M., Wondji, M.J., Hearn, J., Desire, M.H., Ibrahim, S.S., Wondji, C.S., 2025. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. GENETICS 229, 1–40. https://doi.org/10.1093/genetics/iyae181

Domanitskaya, E., Anllo, L., Schüpbach, T., 2014. Phantom, a cytochrome P450 enzyme essential for ecdysone biosynthesis, plays a critical role in the control of border cell migration in Drosophila. Developmental Biology 386, 408–418. https://doi.org/10.1016/j.ydbio.2013.12.013

Dombrowski, S.M., Krishnan, R., Witte, M., Maitra, S., Diesing, C., Waters, L.C., Ganguly, R., 1998. Constitutive and barbital-induced expression of the Cyp6a2 allele of a high producer strain of CYP6A2 in the genetic background of a low producer strain. Gene 221, 69–77. https://doi.org/10.1016/S0378-1119(98)00436-3

Dong, W., Zhang, X., Kong, Y., Zhao, Z., Mahmoud, A., Wu, L., Moussian, B., Zhang, J., 2022. CYP311A1 in the anterior midgut is involved in lipid distribution and microvillus integrity in Drosophila melanogaster. Cell. Mol. Life Sci. 79, 261. https://doi.org/10.1007/s00018-022-04283-5

Dowd, P.F., Smith, C.M. and Sparks, T.C. 1983. Detoxification of plant toxins by insects. Insect Biochem., 13, 453-468.

Drabek, J. and Neumann, R. 1985. Proinsecticides. In: Insecticides (ed. D.H. Hutson and T.R. Roberts), p. 35-86. John Wiley & Sons Ltd.

Driscoll TP, Verhoeve VI, Gillespie JJ, Johnston JS, Guillotte ML, Rennoll-Bankert KE, Rahman MS, Hagen D, Elsik CG, Macaluso KR, Azad AF. 2020. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol.18:70. https://doi.org/10.1186/s12915-020-00802-7

Du, J., Yin, H., Li, J., Zhang, W., Ding, G., Zhou, D., Sun, Y. and Shen, B. 2024. Transcription factor B-H2 regulates CYP9J34 expression conveying deltamethrin resistance in Culex pipiens pallens. Pest Manag Sci, 80: 1991-2000. https://doi.org/10.1002/ps.7934

Du, Z., Zhang, G., Yu, C., Qin, Y., He, S., Li, J., Guo, L., Wan, H., 2024. Characterization of CYP303A1 and its potential application based on ZIF ‐8 nanoparticle‐wrapped dsRNA in Nilaparvata lugens ( Stål ). Pest Management Science ps.8479. https://doi.org/10.1002/ps.8479

du Rand, E.E., Pirk, C.W.W., Nicolson, S.W., Apostolides, Z., 2017. The metabolic fate of nectar nicotine in worker honey bees. Journal of Insect Physiology 98, 14–22. https://doi.org/10.1016/j.jinsphys.2016.10.017

Duarte, A., Pym, A., Garrood, W.T., Troczka, B.J., Zimmer, C.T., Davies, T.G.E., Nauen, R., O’Reilly, A.O., Bass, C., 2022. P450 gene duplication and divergence led to the evolution of dual novel functions and insecticide cross-resistance in the brown planthopper Nilaparvata lugens. PLoS Genet 18, e1010279. https://doi.org/10.1371/journal.pgen.1010279

Dulbecco, A.B., Moriconi, D.E., Calderón-Fernández, G.M., Lynn, S., McCarthy, A., Roca-Acevedo, G., Salamanca-Moreno, J.A., Juárez, M.P., Pedrini, N., 2018. Integument CYP genes of the largest genome-wide cytochrome P450 expansions in triatomines participate in detoxification in deltamethrin-resistant Triatoma infestans. Sci Rep 8, 10177. https://doi.org/10.1038/s41598-018-28475-x

Dulbecco, A.B., Moriconi, D.E., Lynn, S., McCarthy, A., Juárez, M.P., Girotti, J.R., Calderón‐Fernández, G.M., 2020. Deciphering the role of Rhodnius prolixus CYP4G genes in straight and methyl‐branched hydrocarbon formation and in desiccation tolerance. Insect Mol Biol imb.12653. https://doi.org/10.1111/imb.12653

Dulbecco, A.B., Moriconi, D.E., Pedrini, N., 2021. Knockdown of CYP4PR1, a cytochrome P450 gene highly expressed in the integument tissue of Triatoma infestans, increases susceptibility to deltamethrin in pyrethroid-resistant insects. Pesticide Biochemistry and Physiology 173, 104781. https://doi.org/10.1016/j.pestbp.2021.104781

Dumas P, Sambou M, Gaudet JD, Morin MD, Moffat CE, Boquel S, Jr Morin P. 2020 Differential expression of transcripts with potential relevance to chlorantraniliprole response in the Colorado potato beetle, Leptinotarsa decemlineata. Arch Insect Biochem Physiol. 103:e21642. https://doi.org/10.1002/arch.21642

Duneau, D., Sun, H., Revah, J., San Miguel, K., Kunerth, H.D., Caldas, I.V., Messer, P.W., Scott, J.G., Buchon, N., 2018. Signatures of Insecticide Selection in the Genome of Drosophila melanogaster. G3 8, 3469–3480. https://doi.org/10.1534/g3.118.200537

Dunkov, B.C., Guzov, V.M., Mocelin, G., Shotkoski, F., Brun, A., Amichot, M., Ffrench-Constant, R.H., Feyereisen, R., 1997. The Drosophila Cytochrome P450 Gene Cyp6a2 : Structure, Localization, Heterologous Expression, and Induction by Phenobarbital. DNA and Cell Biology 16, 1345–1356. https://doi.org/10.1089/dna.1997.16.1345

Dunkov, B C., Rodriguez-Arnaiz, R., Pittendrigh, B, ffrench-Constant, R. H., Feyereisen, R. 1996. Cytochrome P450 gene clusters in Drosophila melanogaster. Mol Gen Genet 251, 290-7.https://doi.org/10.1007/BF02172519

Durairaj, P., Li, S., 2022. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. Engineering Microbiology 2, 100011. https://doi.org/10.1016/j.engmic.2022.100011

Durairaj P, Fan L, Du W, Ahmad S, Mebrahtu D, Sharma SS, Ashraf RA, Liu J, LiuQ, Bureik M 2019. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett. 593: 1372-1380.

Durairaj, J., Waterhouse, A.M., Mets, T., Brodiazhenko, T., Abdullah, M., Studer, G., Tauriello, G., Akdel, M., Andreeva, A., Bateman, A., Tenson, T., Hauryliuk, V., Schwede, T., Pereira, J., 2023. Uncovering new families and folds in the natural protein universe. Nature 622, 646–653. https://doi.org/10.1038/s41586-023-06622-3

Durant, A.C., Grieco Guardian, E., Kolosov, D., Donini, A., 2021. The transcriptome of anal papillae of Aedes aegypti reveals their importance in xenobiotic detoxification and adds significant knowledge on ion, water and ammonia transport mechanisms. Journal of Insect Physiology 132, 104269. https://doi.org/10.1016/j.jinsphys.2021.104269

Durham, E.W., Siegfried, B.D. and Scharf, M.E. 2002. In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis. Pest Management Science, 58, 799-804.

Durigan, M.R., Corrêa, A.S., Pereira, R.M., Leite, N.A., Amado, D., de Sousa, D.R., Omoto, C., 2017. High frequency of CYP337B3 gene associated with control failures of Helicoverpa armigera with pyrethroid insecticides in Brazil. Pesticide Biochemistry and Physiology 143, 73–80. https://doi.org/10.1016/j.pestbp.2017.09.005

Duvaux, L., Geissmann, Q., Gharbi, K., Zhou, J.-J., Ferrari, J., Smadja, C.M., Butlin, R.K., 2015. Dynamics of Copy Number Variation in Host Races of the Pea Aphid. Molecular Biology and Evolution 32, 63–80. https://doi.org/10.1093/molbev/msu266

Edi, C.V., Djogbénou, L., Jenkins, A.M., Regna, K., Muskavitch, M.A.T., Poupardin, R., Jones, C.M., Essandoh, J., Kétoh, G.K., Paine, M.J.I., Koudou, B.G., Donnelly, M.J., Ranson, H., Weetman, D., 2014. CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and Multiple Insecticide Resistance in the Malaria Mosquito Anopheles gambiae. PLoS Genet 10, e1004236. https://doi.org/10.1371/journal.pgen.1004236

El-Garj, F., Wajidi, M.F.F., Avicor, S.W., 2016. Allelic variants of cytochrome P450 monooxygenases: Constitutive and insecticide-mediated expression in a Malaysian strain of the dengue vector, Aedes aegypti (Diptera: Culicidae). Eur. J. Entomol. 113, 507–515. https://doi.org/10.14411/eje.2016.067

Ellis, J., Gutierrez, A, Barsukov, I. L., Huang, W. C., Grossmann, J. G., Roberts, G. C. 2009. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering. J Biol Chem 284, 36628-37.

Elzaki, M., Miah, M., Han, Z., 2017. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus. IJMS 18, 2564. https://doi.org/10.3390/ijms18122564

Elzaki, M.E.A., Miah, M.A., Peng, Y., Zhang, H., Jiang, L., Wu, M., Han, Z., 2018. Deltamethrin is metabolized by CYP6FU1, a cytochrome P450 associated with pyrethroid resistance, in Laodelphax striatellus: CYP6FU1 metabolizes deltamethrin in Laodelphax striatellus. Pest. Manag. Sci 74, 1265–1271. https://doi.org/10.1002/ps.4808

Elzaki, M.E.A., Miah, M.A., Wu, M., Zhang, H., Pu, J., Jiang, L., Han, Z., 2017. Imidacloprid is degraded by CYP353D1v2, a cytochrome P450 overexpressed in a resistant strain of Laodelphax striatellus: Degradation of imidacloprid by CYP353D1v2 in resistant L. striatellus. Pest. Manag. Sci. 73, 1358–1363. https://doi.org/10.1002/ps.4570

Elzaki, M.E.A., Xue, R., Hu, L., Wang, J., Zeng, R., Song, Y., 2019. Bioactivation of aflatoxin B1 by a cytochrome P450, CYP6AE19 induced by plant signaling methyl jasmonate in Helicoverpa armigra (Hübner). Pesticide Biochemistry and Physiology 157, 211–218. https://doi.org/10.1016/j.pestbp.2019.03.020

Elzaki, M.E.A., Zhang, W., Han, Z., 2015. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén): Ethripole resistance in L. striatellus. Insect Molecular Biology 24, 368–376. https://doi.org/10.1111/imb.12164

Estabrook,R. W., Cooper, D. Y. ,Rosenthal, O. 1963 The Light Reversible Carbon Monoxide Inhibition of the Steroid C21-Hydroxylase System of the Adrenal Cortex Biochemische Zeitschrift, 338, 741-755.

Etebari, K., Afrad, M.H., Tang, B., Silva, R., Furlong, M.J., Asgari, S., 2018. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella: miRNAs and regulation of insecticide resistance. Insect Mol Biol 27, 478–491. https://doi.org/10.1111/imb.12387

Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita M, Kohli MK, Legendre F, Liu S, Machida R, Misof B, et al. 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites Blattodea. Proc Biol Sci 286: 20182076

Fadahunsi, A.I., Kumm, C., Graham, K., De León, A.A.P., Guerrero, F., Sparagano, O.A.E., Finn, R.D., 2023. Biochemical characterisation of Cytochrome P450 oxidoreductase from the cattle tick, Rhipicephalus microplus, highlights potential new acaricide target. Ticks and Tick-borne Diseases 14, 102148. https://doi.org/10.1016/j.ttbdis.2023.102148

Fadel, A.N., Ibrahim, S.S., Sandeu, M.M., Tatsinkou, C.G.M., Menze, B.D., Irving, H., Hearn, J., Nagi, S.C., Weedall, G.D., Terence, E., Tchapga, W., Wanji, S., Wondji, C.S., 2024. Exploring the molecular mechanisms of increased intensity of pyrethroid resistance in Central African population of a major malaria vector Anopheles coluzzii. Evolutionary Applications 17, e13641. https://doi.org/10.1111/eva.13641

Falckh, P., Balcombe, W., Haritos, V., Ahokas, J., 1997. Isolation and identification of a cytochrome P450 sequence in an Australian termite, Mastotermes darwiniensis. Biochem Biophys Res Commun 241, 579-583.

Fallon TR, Lower SE, Chang C-H, Bessho-Uehara M, Martin GJ, Bewick AJ, Behringer M, Debat HJ, Wong I, Day JC, et al. 2018. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife 7:e36495

Faucon, F., Dusfour, I., Gaude, T., Navratil, V., Boyer, F., Chandre, F., Sirisopa, P., Thanispong, K., Juntarajumnong, W., Poupardin, R., Chareonviriyaphap, T., Girod, R., Corbel, V., Reynaud, S., David, J.-P., 2015. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 25, 1347–1359. https://doi.org/10.1101/gr.189225.115

Faucon, F., Gaude, T., Dusfour, I., Navratil, V., Corbel, V., Juntarajumnong, W., Girod, R., Poupardin, R., Boyer, F., Reynaud, S., David, J.-P., 2017. In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS Negl Trop Dis 11, e0005526. https://doi.org/10.1371/journal.pntd.0005526

Feldlaufer MF, Hartfelder K. 1997. Relationship of the neutral sterols and ecdysteroids of the parasitic mite, Varroa jacobsoni to those of the honey bee, Apis mellifera. Journal of Insect Physiology 43: 541-545

Felix, R., Muller, P., Ribeiro, V., Ranson, H., Silveira, H., 2010. Plasmodium infection alters Anopheles gambiae detoxification gene expression. BMC Genomics 11, 312.

Feng, B., Zheng, K., Li, C., Guo, Q., Du, Y., 2017. A cytochrome P450 gene plays a role in the recognition of sex pheromones in the tobacco cutworm, Spodoptera litura. Insect Molecular Biology 26, 369–382. https://doi.org/10.1111/imb.12307

Feng, R., Houseman, J.G. and Downe, A.E.R. 1992 Effect of ingested meridic diet and corn leaves on midgut detoxification processes in the European corn borer, Ostrinia nubilalis. Pestic. Biochem. Physiol., 42, 203-210.

Feng, K., Liu, J., Zhao, M., Jiang, Z., Liu, P., Wei, P., Dou, W., He, L., 2023. The dynamic changes of genes revealed that persistently overexpressed genes drive the evolution of cyflumetofen resistance in Tetranychus cinnabarinus. Insect Science 30, 1129–1148. https://doi.org/10.1111/1744-7917.13151

Feng, K., Ou, S., Zhang, P., Wen, X., Shi, L., Yang, Y., Hu, Y., Zhang, Y., Shen, G., Xu, Z., He, L., 2020. The cytochrome P450 CYP389C16 contributes to the cross‐resistance between cyflumetofen and pyridaben in Tetranychus cinnabarinus (Boisduval). Pest. Manag. Sci. 76, 665–675. https://doi.org/10.1002/ps.5564

Fenwick ML 1958 The production of an esterase inhibitor from schradan in the fat body of the desert locust. Biochem.J. 70:373-381. https://doi.org/10.1042/bj0700373

Fernández R, Edgecombe GD, Giribet G. 2016. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction. Systematic Biology 65: 871-889

Festucci-Buselli, R., Carvalho-Dias, A., de Oliveira-Andrade, M., Caixeta-Nunes, C., Li, H., Stuart, J., Muir, W., Scharf, M., Pittendrigh, B., 2005. Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol Biol 14, 69-77.

Feyereisen, R., 2022. The P450 genes of the cat flea, Ctenocephalides felis: a CYPome in flux. Current Research in Insect Science 100032. https://doi.org/10.1016/j.cris.2022.100032

Feyereisen, R., 2020. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Molecular Phylogenetics and Evolution 143, 106695. https://doi.org/10.1016/j.ympev.2019.106695

Feyereisen R. 2018. Bee P450s take the sting out of cyanoamidine neonicotinoids. Current Biology. 58: R560-561. https://doi.org/10.1016/j.cub.2018.03.013

Feyereisen, R., 2015. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest. Manag. Sci. 71, 793–800. https://doi.org/10.1002/ps.3895

Feyereisen R. 2012. Insect CYP genes and P450 enzymes. In: Gilbert LI, editor. Insect Molecular Biology and Biochemistry. Amsterdam: Elsevier. p 236-316.

Feyereisen, R., 2011. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814, 19–28. https://doi.org/10.1016/j.bbapap.2010.06.012

Feyereisen, R., 2006. Evolution of insect P450. Biochemical Society Transactions 34, 1252–1255. https://doi.org/10.1042/BST0341252

Feyereisen R. 2005. Insect Cytochrome P450, in: Comprehensive Molecular Insect Science, vol 4, chapter 1, pp 1-77 L I Gilbert, K Iatrou & SS Gill (Eds.) Elsevier

Feyereisen R. 1999. Insect P450 enzymes. Annual Review of Entomology 44: 507-533

Feyereisen R. 1983. Polysubstrate monooxygenases cytochrome P-450 in larvae of susceptible and resistant strains of house flies. Pestic. Biochem. Physiol. 19, 262-269.

Feyereisen, R. 1977. Cytochrome P-450 et hydroxylation de l'ecdysone en ecdysterone chez Locusta migratoria. C.R. Acad. Sc. Paris, 284, 1831-1834.

Feyereisen R, Durst F. 1978. Ecdysterone biosynthesis: a microsomal cytochrome-P-450-linked ecdysone 20-monooxygenase from tissues of the African migratory locust. Eur J Biochem.88:37-47. https://doi.org/10.1111/j.1432-1033.1978.tb12420.x

Feyereisen R, Vincent DR 1984. Characterization of antibodies to house fly NADPH-cytochrome P-450 reductase. Insect Biochemistry 14, 163-168.

Feyereisen, R., Baldridge, G.D. and Farnsworth, D.E. 1985. A rapid method for preparing insect microsomes. Comp. Biochem. Physiol., 82B, 559-62.

Feyereisen, R., Dermauw, W., Van Leeuwen, T., 2015. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology 121, 61–77. https://doi.org/10.1016/j.pestbp.2015.01.004

Feyereisen, R., Koener, J.F., Farnsworth, D.E., Nebert, D.W., 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proceedings of the National Academy of Sciences 86, 1465–1469. https://doi.org/10.1073/pnas.86.5.1465

Feyereisen R, Koener JF, Cariño FA, Daggett AS 1990. Biochemistry and molecular biology of insect cytochrome P450, in: Molecular Insect Science H H Hagedorn, J G Hildebrand, M G Kidwell and J H Law (Eds) Plenum Press, New York 263-272

Feyereisen R, Langry KC, Ortiz de Montellano, PR 1984. Self-catalyzed destruction of insect cytochrome P-450. Insect Biochemistry 14, 19-26.

Feyereisen R, Pratt GE, Hamnett AF. 1981. Enzymic synthesis of juvenile hormone in locust corpora allata: evidence for a microsomal cytochrome P-450 linked methyl farnesoate epoxidase. Eur J Biochem 118, 231-8.https://doi.org/10.1111/j.1432-1033.1981.tb06391.x

Feyereisen R, Urban JM, ,Nelson DR. 2023. Aliens in the CYPome of the black fungus gnat, Bradysia coprophila. Insect Biochemistry and Molecular Biology 159, 103965. https://doi.org/10.1016/j.ibmb.2023.103965

ffrench-Constant, R.H., Park, Y. and Feyereisen, R. 1999. Molecular biology of insecticide resistance. In: Molecular biology of the toxic response (ed. A. Puga and K.B. Wallace), p. 533-551. Taylor and Francis.

Fisher, T., Crane, M., Callaghan, A., 2003. Induction of cytochrome P450 activity in individual Chironomus riparius Meigen larvae exposed to xenobiotics. Ecotoxicology and Environmental Safety 54, 1-6.

Fogleman, J.C., Danielson, P.B. and MacLntyre, R.J. 1998. The molecular basis of adaptation in Drosophila: the role of cytochrome P450s. In: Evolutionary Biology, Vol. 30 (ed. M. Hecht, R. MacIntyre and M. Clegg), p. 15-77. Plenum Press.

Fogleman, J., 2000. Response of Drosophila melanogaster to selection for P450-mediated resistance to isoquinoline alkaloids. Chem Biol Interact 125, 93-105.

Fotoukkiaii, S.M., Wybouw, N., Kurlovs, A.H., Tsakireli, D., Pergantis, S.A., Clark, R.M., Vontas, J., Van Leeuwen, T., 2021. High-resolution genetic mapping reveals cis-regulatory and copy number variation in loci associated with cytochrome P450-mediated detoxification in a generalist arthropod pest. PLoS Genet 17, e1009422. https://doi.org/10.1371/journal.pgen.1009422

Fountain, T., Ravinet, M., Naylor, R., Reinhardt, K., Butlin, R.K., 2016. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius. G3 Genes|Genomes|Genetics 6, 4059–4066. https://doi.org/10.1534/g3.116.033092

Fournier-Level, A., Neumann-Mondlak, A., Good, R.T., Green, L.M., Schmidt, J.M., Robin, C., 2016. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster. J. Evol. Biol. 29, 1030–1044. https://doi.org/10.1111/jeb.12844

Frank, M.R. and Fogleman, J.C. 1992. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila. Proc. Natl. Acad. Sci. USA, 89, 11998-2002.

Fratini, E., Salvemini, M., Lombardo, F., Muzzi, M., Molfini, M., Gisondi, S., Roma, E., D’Ezio, V., Persichini, T., Gasperi, T., Mariottini, P., Di Giulio, A., Bologna, M.A., Cervelli, M., Mancini, E., 2021. Unraveling the role of male reproductive tract and haemolymph in cantharidin-exuding Lydus trimaculatus and Mylabris variabilis (Coleoptera: Meloidae): a comparative transcriptomics approach. BMC Genomics 22, 808. https://doi.org/10.1186/s12864-021-08118-8

Freeman, J.C., Scott, J.G., 2024. Genetics, genomics and mechanisms responsible for high levels of pyrethroid resistance in Musca domestica. Pesticide Biochemistry and Physiology 198, 105752. https://doi.org/10.1016/j.pestbp.2023.105752

Freeman, M.R., Dobritsa, A., Gaines, P., Segraves, W.A., Carlson, J.R., 1999. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development 126, 4591–4602. https://doi.org/10.1242/dev.126.20.4591

Fricaux, T., Le Navenant, A., Siegwart, M., Rault, M., Coustau, C., Le Goff, G., 2023. The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies. Insects 14, 944. https://doi.org/10.3390/insects14120944

Frolov, M.V. and Alatortsev, V.E. 1994. Cluster of cytochrome P450 genes on the X chromosome of Drosophila melanogaster. DNA Cell Biol, 13, 663-8.

Fu, N., Becker, T., Brandt, W., Kunert, M., Burse, A., Boland, W., 2022. Involvement of CYP347W1 in neurotoxin 3‐nitropropionic acid‐based chemical defense in mustard leaf beetle Phaedon cochleariae. Insect Science 29, 453–466. https://doi.org/10.1111/1744-7917.12944

Fu, N., Yang, Z.-L., Pauchet, Y., Paetz, C., Brandt, W., Boland, W., Burse, A., 2019. A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis. Insect Biochemistry and Molecular Biology 113, 103212. https://doi.org/10.1016/j.ibmb.2019.103212

Fuchs, S., Spiegelman, V., Belitsky, G., 1993. The effect of the cytochrome P-450 system inducers on the development of Drosophila melanogaster. J Biochem Toxicol 8, 83-88.

Fuchs, S., Spiegelman, V., Belitsky, G., 1994. Inducibility of various cytochrome P450 isozymes by phenobarbital and some other xenobiotics in Drosophila melanogaster. Biochem Pharmacol 47, 1867-1873.

Fujii, S., Amrein, H., 2002. Genes expressed in the Drosophila head reveal a role for fat cells in sex-specific physiology. EMBO J 21, 5353-5363.

Fujii, S., Toyama, A., Amrein, H., 2008. A male-specific fatty acid omega-hydroxylase, SXE1, is necessary for efficient male mating in Drosophila melanogaster. Genetics 180, 179-190.[this gene, incorrectly named SXE1 is CYP4D21, and has not been shown to be a fatty acid hydroxylase]

Fujii, T., Yamamoto, M., Nakano, R., Nirazawa, T., Rong, Y., Dong, S.-L., Ishikawa, Y., 2015. Alkenyl sex pheromone analogs in the hemolymph of an arctiid Eilema japonica and several non-arctiid moths. Journal of Insect Physiology 82, 109–113. https://doi.org/10.1016/j.jinsphys.2015.09.006

Fuji-Kuriyama, Y., Mizukami, Y., Kawajiri, K., Sogawa, K., Muramatsu, M 1982. Primary structure of a cytochrome P-450: coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver. Proc Natl Acad Sci U S A 79, 2793-2797.

Fujii-Taira, I., Yamaguchi, S., Iijima, R., Natori, S., Homma, K.J., 2009. Suppression of the ecdysteroid-triggered growth arrest by a novel Drosophila membrane steroid binding protein. FEBS Letters 583, 655–660. https://doi.org/10.1016/j.febslet.2008.12.056

Fusetto, R., Denecke, S., Perry, T., O’Hair, R.A.J., Batterham, P., 2017. Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster. Sci Rep 7, 11339. https://doi.org/10.1038/s41598-017-09800-2

Gaddelapati, S.C., Kalsi, M., Roy, A., Palli, S.R., 2018. Cap “n” collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochemistry and Molecular Biology 99, 54–62. https://doi.org/10.1016/j.ibmb.2018.05.006

Gandhi, R., Varak, E. and Goldberg, M.L. 1992. Molecular analysis of a cytochrome P450 gene of family 4 on the Drosophila X chromosome. DNA Cell Biol, 11, 397-404.

Gao S, Guo X, Liu S, et al. 2023. Cytochrome P450 gene CYP6BQ8 mediates terpinen-4-ol susceptibility in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Bulletin of Entomological Research 113,271-281. https://doi.org/10.1017/S0007485322000566

Gao, H., Zang, Y., Zhang, Y., Zhao, H., Ma, W., Chen, X., Wang, J., Zhao, D., Wang, X., Huang, Y., Zhang, F., 2023. Transcriptome analysis revealed that short-term stress in Blattella germanica to β-cypermethrin can reshape the phenotype of resistance adaptation. Pesticide Biochemistry and Physiology 197, 105703. https://doi.org/10.1016/j.pestbp.2023.105703

Gao, J., Scott, J., 2006. Role of the transcriptional repressor mdGfi-1 in CYP6D1v1-mediated insecticide resistance in the house fly, Musca domestica. Insect Biochem Mol Biol 36, 387-395.

Gao, Q., Li, M., Sheng, C., Scott, J.G., Qiu, X., 2012. Multiple cytochrome P450s overexpressed in pyrethroid resistant house flies (Musca domestica). Pesticide Biochemistry and Physiology 104, 252–260. https://doi.org/10.1016/j.pestbp.2012.09.006

Gao, S., Liu, K., Liu, H., Yin, S., Guo, X., Zhang, Y., Zhang, K., Li, R., 2022. Functional analysis of a cytochrome P450 gene CYP9Z6 responding to terpinen-4-ol in the red flour beetle, Tribolium castaneum. Pesticide Biochemistry and Physiology 183, 105065. https://doi.org/10.1016/j.pestbp.2022.105065

Gao, T., Zhang, Y., Sun, W., Li, Q., Huang, X., Zhi, D., Zi, H., Ji, R., Long, Y., Gong, C., Yang, Y., 2025. The symbiont Wolbachia increases resistance to bifenthrin in Ectropis grisescens by regulating the host detoxification function. Ecotoxicology and Environmental Safety 289, 117666. https://doi.org/10.1016/j.ecoenv.2025.117666

Gao, X., Yang, J., Xu, B., Xie, W., Wang, S., Zhang, Y., Yang, F., Wu, Q., 2016. Identification and Characterization of the Gene CYP340W1 from Plutella xylostella and Its Possible Involvement in Resistance to Abamectin. IJMS 17, 274. https://doi.org/10.3390/ijms17030274

Gao X, Zhu X, Wang C, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J. 2022. Silencing of Cytochrome P450 Gene AgoCYP6CY19 Reduces the Tolerance to Host Plant in Cotton- and Cucumber-Specialized Aphids, Aphis gossypii. J Agric Food Chem.70,12408-12417. https://doi.org/10.1021/acs.jafc.2c05403.

Gao, Y., Kim, J.H., Jeong, I.H., Clark, J.M., Lee, S.H., 2021. Transcriptomic identification and characterization of genes commonly responding to sublethal concentrations of six different insecticides in the common fruit fly, Drosophila melanogaster. Pesticide Biochemistry and Physiology 175, 104852. https://doi.org/10.1016/j.pestbp.2021.104852

Gao, Y., Kim, K., Kwon, D.H., Jeong, I.H., Clark, J.M., Lee, S.H., 2018. Transcriptome-based identification and characterization of genes commonly responding to five different insecticides in the diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology 144, 1–9. https://doi.org/10.1016/j.pestbp.2017.11.007

Garfinkel D. 1958. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys.77:493-509. https://doi.org/10.1016/0003-9861(58)90095-x

Garrood, W.T., Zimmer, C.T., Gorman, K.J., Nauen, R., Bass, C., Davies, T.G., 2016. Field‐evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia. Pest. Manag. Sci. 72, 140–149. https://doi.org/10.1002/ps.3980

Garud, N.R., Messer, P.W., Buzbas, E.O., Petrov, D.A., 2015. Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLoS Genet 11, e1005004. https://doi.org/10.1371/journal.pgen.1005004

Gellatly, K.J., Yoon, K.S., Doherty, J.J., Sun, W., Pittendrigh, B.R., Clark, J.M., 2015. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster. Pesticide Biochemistry and Physiology 121, 107–115. https://doi.org/10.1016/j.pestbp.2015.01.001

Giacomini, J.J., Adler, L.S., Reading, B.J., Irwin, R.E., 2021. Differential Bumble Bee Gene Expression Associated With Pathogen Infection And Pollen Diet (preprint). In Review. https://doi.org/10.21203/rs.3.rs-912647/v1

Gilbert, L., 2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215, 1-10.

Gimenez, S., Abdelgaffar, H., Goff, G.L., Hilliou, F., Blanco, C.A., Hänniger, S., Bretaudeau, A., Legeai, F., Nègre, N., Jurat-Fuentes, J.L., d’Alençon, E., Nam, K., 2020. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun Biol 3, 664. https://doi.org/10.1038/s42003-020-01382-6

Ginzel, M.D., Tittiger, C., MacLean, M., Blomquist, G.J., 2021. Hydrocarbon pheromone production in insects, in: Insect Pheromone Biochemistry and Molecular Biology. Elsevier, pp. 205–235. https://doi.org/10.1016/B978-0-12-819628-1.00007-9

Girardot, F., Monnier, V., Tricoire, H., 2004. Genome wide analysis of common and specific stress responses in adult drosophila melanogaster. BMC Genomics 5, 74.

Giraudo, M., Hilliou, F., Fricaux, T., Audant, P., Feyereisen, R., Le Goff, G., 2015. Cytochrome P450s from the fall armyworm ( Spodoptera frugiperda ): responses to plant allelochemicals and pesticides: P450 induction in fall armyworm. Insect Mol Biol 24, 115–128. https://doi.org/10.1111/imb.12140

Giraudo, M., Unnithan, G.C., Le Goff, G., Feyereisen, R., 2010. Regulation of cytochrome P450 expression in Drosophila: Genomic insights. Pesticide Biochemistry and Physiology 97, 115–122. https://doi.org/10.1016/j.pestbp.2009.06.009

Glaser-Schmitt, A., Zečić, A., Parsch, J., 2018. Gene Regulatory Variation in Drosophila melanogaster Renal Tissue. Genetics 210, 287–301. https://doi.org/10.1534/genetics.118.301073

Glendinning, J.I. and Slansky, F., Jr. 1995. Consumption of a toxic food by caterpillars increases with dietary exposure: support for a role of induced detoxification enzymes. J. Comp. Physiol. A, 176, 337-345.

Gloss, A.D., Abbot, P., Whiteman, N.K., 2019a. How interactions with plant chemicals shape insect genomes. Current Opinion in Insect Science 36, 149–156. https://doi.org/10.1016/j.cois.2019.09.005

Gloss, A.D., Dittrich, A.C.N., Lapoint, R.T., Goldman-Huertas, B., Verster, K.I., Pelaez, J.L., Aguilar, J., Armstrong, E., Charboneau, J.L.M., Hembry, D.H., Ochoa, C.J., O’Connor, T.K., Suzuki, H.C., Zaaijer, S., Nabity, P.D., Whiteman, N.K., 2019b. Evolution of herbivory remodels a Drosophila genome 32.

Gong, C., Liu, D., Wang, Q., Ma, Y., Zhan, X., Zhang, S., Awais, M., Pu, J., Yang, J., Wang, X., 2023. Metabolic Resistance of Sogatella furcifera (Hemiptera: Delphacidae) toward Pymetrozine Involves the Overexpression of CYP6FJ3. J. Agric. Food Chem. 71, 14179–14191. https://doi.org/10.1021/acs.jafc.3c03617

Gong, C., Ruan, Y., Zhang, Y., Wang, Q., Wu, Y., Zhan, X., He, Y., Liu, Xinxian, Liu, Xuemei, Pu, J., Wang, X., 2022. Resistance of Sogatella furcifera to triflumezopyrim mediated with the overexpression of CYPSF01 which was regulated by nuclear receptor USP. Ecotoxicology and Environmental Safety 238, 113575. https://doi.org/10.1016/j.ecoenv.2022.113575 [this is CYP6FJ3]

Gong, C., Wang, Y., Huang, Q., Xu, Z., Zhang, Y., Hasnain, A., Zhan, X., He, Y., Zhang, T., Shen, L., Pu, J., Awais, M., Wang, X., 2022. Maf regulates the overexpression of CYP307A1, which is involved in the fitness advantage of bistrifluron-resistant Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Ecotoxicology and Environmental Safety 234, 113425. https://doi.org/10.1016/j.ecoenv.2022.113425 [this is CYP307A2]

Gong, P.-P., Wei, X.-G., Liu, S.-N., Yang, J., Fu, B.-L., Liang, J.-J., Huang, M.-J., Du, T.-H., Yin, C., Ji, Y., He, C., Hu, J.-Y., Xue, H., Wang, C., Zhang, R., Du, H., Zhang, C., Yang, X., Zhang, Y.-J., 2023. Novel_miR-1517 mediates CYP6CM1 to regulate imidacloprid resistance in Bemisia tabaci (Hemiptera: Gennadius). Pesticide Biochemistry and Physiology 194, 105469. https://doi.org/10.1016/j.pestbp.2023.105469

Gong Y, Cheng S, Xiu X, Li F, Liu N, Hou M.2023. Molecular Evolutionary Mechanisms of CYP6ER1vA-Type Variant Associated with Resistance to Neonicotinoid Insecticides in Field Populations of Nilaparvata lugens. J Agric Food Chem. 71,19935-19948. https://doi.org/10.1021/acs.jafc.3c03167

Gong, Y., Li, T., Feng, Y., Liu, N., 2017. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci Rep 7, 587. https://doi.org/10.1038/s41598-017-00486-0

Gong, Y., Li, T., Li, Q., Liu, S., Liu, N., 2022. The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito Culex quinquefasciatus. Front. Physiol. 12, 802584. https://doi.org/10.3389/fphys.2021.802584

Gong, Y., Li, T., Zhang, L., Gao, X., Liu, N., 2013. Permethrin Induction of Multiple Cytochrome P450 Genes in Insecticide Resistant Mosquitoes, Culex quinquefasciatus. Int. J. Biol. Sci. 9, 863–871. https://doi.org/10.7150/ijbs.6744

Good, R.T., Gramzow, L., Battlay, P., Sztal, T., Batterham, P., Robin, C., 2014. The Molecular Evolution of Cytochrome P450 Genes within and between Drosophila Species. Genome Biology and Evolution 6, 1118–1134. https://doi.org/10.1093/gbe/evu083

Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 CYP2 proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267, 83-90.

Gotoh, O. 1993. Evolution and Differentiation of P-450 genes. In Cytochrome P-450, Second edition Omura, T., Ishimura, Y., Fuji-Kuriyama, Y., eds., pp. 255-272. Kodansha, Tokyo.

Gotoh, O. 1998. Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes. Molecular Biology and Evolution 15, 1447-1459.

Gotoh O. 2012. Evolution of cytochrome p450 genes from the viewpoint of genome informatics. Biol Pharm Bull 35: 812-817

Gould, F., 1984. Mixed function oxidases and herbivore polyphagy: the devil’s advocate position. Ecological Entomology 9, 29–34. https://doi.org/10.1111/j.1365-2311.1984.tb00695.x

Gould, F., Hodgson, E. 1980. Mixed Function Oxidase and Glutathione Transferase Activity in Last lnstar Heliothis virescens Larvae. Pesticide Biochemistry and Physiology 13:34-40.

Graham, K.M., Sparagano, O.A.E., Finn, R.D., 2016. Isolation of the monooxygenase complex from Rhipicephalus (Boophilus) microplus – clues to understanding acaricide resistance. Ticks and Tick-borne Diseases 7, 614–623. https://doi.org/10.1016/j.ttbdis.2016.01.012

Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y. 2011 The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487-92. https://doi.org/10.1038/nature10640

Green, E., Zangerl, A., Berenbaum, M., 2001. Effects of phytic acid and xanthotoxin on growth and detoxification in caterpillars. J Chem Ecol 27, 1763-1773.

Green, L., Battlay, P., Fournier-Level, A., Good, R.T., Robin, C., 2019. Cis - and trans -acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides. Proc Natl Acad Sci USA 116, 10424–10429. https://doi.org/10.1073/pnas.1821713116

Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR.2020. Genome streamlining in a minute herbivore that manipulates its host plant. Elife. 9:e56689. https://doi.org/10.7554/eLife.56689.

Greenwood, D.R. and Rees, H.H. 1984. Ecdysone 20-mono-oxygenase in the desert locust, Schistocerca gregaria. Biochem. J., 223, 837-847.

Greenwood, D.R., Dinan, L.N., Rees, H.H., 1984. Mechanism of hydroxylation at C-2 during the biosynthesis of ecdysone in ovaries of the locust, Schistocerca gregaria. Biochem J 217, 783-789.

Grosso, C.G., Blariza, M.J., Mougabure-Cueto, G., Picollo, M.I., García, B.A., 2016. Identification of three cytochrome P450 genes in the Chagas’ disease vector Triatoma infestans: Expression analysis in deltamethrin susceptible and resistant populations. Infection, Genetics and Evolution 44, 459–470. https://doi.org/10.1016/j.meegid.2016.07.027

Guan, L., Wang, X., Wan, S., Wang, Y., Zhang, X., Wang, S., Li, C., Tang, B., 2024. The Role of TcCYP6K1 and TcCYP9F2 Influences Trehalose Metabolism under High-CO2 Stress in Tribolium castaneum (Coleoptera). Insects 15, 502. https://doi.org/10.3390/insects15070502 [CYP345D2 is wrongly called CYP6K1;CYP9Z5 is wrongly called CYP9F2]

Gunderson, C.A., Brattsten, L.B. and Fleming, J.T. 1986. Microsomal oxidase and glutathione transferase as factors influencing the effects of pulegone in southern and fall armyworm larvae. Pestic. Biochem. Physiol., 26, 238-249.

Guengerich FP. 2017. Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions. Chem. Res. Toxicol. 30: 2-12

Guengerich FP. 2022. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol Ther Seoul. 30:1-18. https://doi.org/10.4062/biomolther.2021.102

Guengerich FP, Martin MV, Sohl CD, Cheng Q. 2009. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat Protoc. 4:1245-51. https://doi.org/10.1038/nprot.2009.121

Guengerich, F.P., Munro, AW., 2013. Unusual Cytochrome P450 Enzymes and Reactions. Journal of Biological Chemistry 288, 17065–17073. https://doi.org/10.1074/jbc.R113.462275

Guengerich FP, Waterman MR, Egli M 2016. Recent Structural Insights into Cytochrome P450 Function. Trends in Pharmacological Sciences 37: 625-640

Guengerich FP, Yoshimoto FK 2018 Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chemical Reviews. 118: 6573-6655.

Gui, F., Lan, T., Zhao, Y., Guo, W., Dong, Y., Fang, D., Liu, H., Li, H., Wang, H., Hao, R., Cheng, X., Li, Y., Yang, P., Sahu, S.K., Chen, Y., Cheng, L., He, S., Liu, P., Fan, G., Lu, H., Hu, G., Dong, W., Chen, B., Jiang, Y., Zhang, Y., Xu, H., Lin, F., Slipper, B., Postma, A., Jackson, M., Abate, B.A., Tesfaye, K., Demie, A.L., Bayeleygne, M.D., Degefu, D.T., Chen, F., Kuria, P.K., Kinyua, Z.M., Liu, T.-X., Yang, H., Huang, F., Liu, X., Sheng, J., Kang, L., 2020. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell. https://doi.org/10.1007/s13238-020-00795-7

Guittard, E., Blais, C., Maria, A., Parvy, J.-P., Pasricha, S., Lumb, C., Lafont, R., Daborn, P.J., Dauphin-Villemant, C., 2011. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Developmental Biology 349, 35–45. https://doi.org/10.1016/j.ydbio.2010.09.023

Guo, G., Geng, Y., Huang, D., Xue, C., Zhang, R., 2010. Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica. Journal of Parasitology Research 2010, 1–7. https://doi.org/10.1155/2010/517534

Guo L, Zhang Z, Xu W, Ma J, Liang N, Li C, Chu D. 2022. Expression profile of CYP402C1 and its role in resistance to imidacloprid in the whitefly, Bemisia tabaci. Insect Science 00, 1–15. https://doi.org/10.1111/1744-7917.13081

Guo, Q., Huang, Y., Zou, F., Liu, B., Tian, M., Ye, W., Guo, J., Sun, X., Zhou, D., Sun, Y., Ma, L., Shen, B., Zhu, C., 2017. The role of miR-2∼13∼71 cluster in resistance to deltamethrin in Culex pipiens pallens. Insect Biochemistry and Molecular Biology 84, 15–22. https://doi.org/10.1016/j.ibmb.2017.03.006

Guo, X., Hou, J., Zhang, W., Zhang, Y., Li, Haolin, Cao, W., Li, Honghong, Li, X., 2024. A cytochrome P450 monooxygenase (CYP337B5) plays a key role in regulating juvenile hormone biosynthesis and degrading chlorantraniliprole in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology 27, 102298. https://doi.org/10.1016/j.aspen.2024.102298

Guo, Y., Zhang, J., Yu, R., Zhu, K.Y., Guo, Yaping, Ma, E., 2012. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria. Chemosphere 87, 709–717. https://doi.org/10.1016/j.chemosphere.2011.12.061

Guo, Y., Zhang, X., Wu, H., Yu, R., Zhang, J., Zhu, K.Y., Guo, Yaping, Ma, E., 2015. Identification and functional analysis of a cytochrome P450 gene CYP9AQ2 involved in deltamethrin detoxification from Locusta migratoria. Pesticide Biochemistry and Physiology 122, 1–7. https://doi.org/10.1016/j.pestbp.2015.01.003

Guo, Y.-A., Si, F.-L., Han, B.-Z., Qiao, L., Chen, B., 2024. Identification and functional validation of P450 genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera Culicidae). Acta Tropica 107413. https://doi.org/10.1016/j.actatropica.2024.107413

Guo, Z., Tang, J., Ma, H., Wu, M., He, S., Wan, H., Ma, K., Li, J., 2024. Investigation of lambda-cyhalothrin resistance in Spodoptera frugiperda: Heritability, cross-resistance, and mechanisms. Pesticide Biochemistry and Physiology 105916. https://doi.org/10.1016/j.pestbp.2024.105916

Gupta, M., singh, S., Kaur, G., Pandher, S., Kaur, N., Goel, N., Kaur, R., Rathore, P., 2021. Transcriptome analysis unravels RNAi pathways genes and putative expansion of CYP450 gene family in cotton leafhopper Amrasca biguttula biguttula(Ishida) (preprint). In Review. https://doi.org/10.21203/rs.3.rs-366446/v1

Guzov, V.M., Houston, H.L., Murataliev, M.B., Walker, F.A., Feyereisen, R., 1996. Molecular Cloning, Overexpression in Escherichia coli, Structural and Functional Characterization of House Fly Cytochrome b5. Journal of Biological Chemistry 271, 26637–26645. https://doi.org/10.1074/jbc.271.43.26637

Guzov, V.M., Unnithan, G.C., Chernogolov, A.A., Feyereisen, R., 1998. CYP12A1, a Mitochondrial Cytochrome P450 from the House Fly. Archives of Biochemistry and Biophysics 359, 231–240. https://doi.org/10.1006/abbi.1998.0901

Haas, J., Beck, E., Troczka, B.J., Hayward, A., Hertlein, G., Zaworra, M., Lueke, B., Buer, B., Maiwald, F., Beck, M.E., Nebelsiek, B., Glaubitz, J., Bass, C., Nauen, R., 2023. A conserved hymenopteran-specific family of cytochrome P450s protects bee pollinators from toxic nectar alkaloids. Sci. Adv. 9, eadg0885. https://doi.org/10.1126/sciadv.adg0885

Haas, J., Glaubitz, J., Koenig, U., Nauen, R., 2022a. A mechanism‐based approach unveils metabolic routes potentially mediating chlorantraniliprole synergism in honey bees, Apis mellifera L. , by azole fungicides. Pest Management Science 78, 965–973. https://doi.org/10.1002/ps.6706

Haas, J., Hayward, A., Buer, B., Maiwald, F., Nebelsiek, B., Glaubitz, J., Bass, C., Nauen, R., 2022b. Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. Proc. Natl. Acad. Sci. U.S.A. 119, e2205850119. https://doi.org/10.1073/pnas.2205850119

Haas, J., Nauen, R., 2021. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. Environment International 147, 106372. https://doi.org/10.1016/j.envint.2020.106372

Haas, J., Zaworra, M., Glaubitz, J., Hertlein, G., Kohler, M., Lagojda, A., Lueke, B., Maus, C., Almanza, M.-T., Davies, T.G.E., Bass, C., Nauen, R., 2021. A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone. Ecotoxicology and Environmental Safety 217, 112247. https://doi.org/10.1016/j.ecoenv.2021.112247

Haberkorn, C., David, J., Henri, H., Delpuech, J., Lasseur, R., Vavre, F., Varaldi, J., 2023. A major 6 Mb superlocus is involved in pyrethroid resistance in the common bed bug Cimex lectularius. Evolutionary Applications 16, 1012–1028. https://doi.org/10.1111/eva.13550

Haddi, K., Valbon, W.R., Viteri Jumbo, L.O., de Oliveira, L.O., Guedes, R.N.C., Oliveira, E.E., 2018. Diversity and convergence of mechanisms involved in pyrethroid resistance in the stored grain weevils, Sitophilus spp. Sci Rep 8, 16361. https://doi.org/10.1038/s41598-018-34513-5

Haelterman, N.A., Jiang, L., Li, Y., Bayat, V., Sandoval, H., Ugur, B., Tan, K.L., Zhang, K., Bei, D., Xiong, B., Charng, W.-L., Busby, T., Jawaid, A., David, G., Jaiswal, M., Venken, K.J.T., Yamamoto, S., Chen, R., Bellen, H.J., 2014. Large-scale identification of chemically induced mutations in Drosophila melanogaster. Genome Res. 24, 1707–1718. https://doi.org/10.1101/gr.174615.114

Hafeez, M., Li, X., Chen, L., Ullah, F., Huang, J., Zhang, Z., Zhang, J., Siddiqui, J.A., Zhou, S., Ren, X., Imran, M., Assiri, M.A., Lou, Y., Lu, Y., 2023. Molecular characterization and functional analysis of cytochrome P450-mediated detoxification CYP302A1 gene involved in host plant adaptation in Spodoptera frugieprda [sic]. Front. Plant Sci. 13, 1079442. https://doi.org/10.3389/fpls.2022.1079442

Hafeez, M., Li, X., Ullah, F., Zhang, Z., Zhang, J., Huang, J., Khan, M., Chen, L., Ren, X., Zhou, S., Fernández-Grandon, G., Zalucki, M., Lu, Y., 2021. Behavioral and Physiological Plasticity Provides Insights into Molecular Based Adaptation Mechanism to Strain Shift in Spodoptera frugiperda. IJMS 22, 10284. https://doi.org/10.3390/ijms221910284

Hafeez, M., Li, X., Ullah, F., Zhang, Z., Zhang, J., Huang, J., Fernández-Grandon, G.M., Khan, M.M., Siddiqui, J.A., Chen, L., Ren, X.Y., Zhou, S., Lou, Y., Lu, Y., 2022. Down-Regulation of P450 Genes Enhances Susceptibility to Indoxacarb and Alters Physiology and Development of Fall Armyworm, Spodoptera frugipreda [sic](Lepidoptera: Noctuidae). Front. Physiol. 13, 884447. https://doi.org/10.3389/fphys.2022.884447

Hafeez, M., Li, X., Zhang, Z., Huang, J., Wang, L., Zhang, J., Shah, S., Khan, M.M., Xu, F., Fernández-Grandon, G.M., Zalucki, M.P., Lu, Y., 2021. De Novo Transcriptomic Analyses Revealed Some Detoxification Genes and Related Pathways Responsive to Noposion Yihaogong® 5% EC (Lambda-Cyhalothrin 5%) Exposure in Spodoptera frugiperda Third-Instar Larvae. Insects 12, 132. https://doi.org/10.3390/insects12020132

Hafeez, M., Liu, S., Jan, S., Shi, L., Fernández-Grandon, G.M., Gulzar, A., Ali, B., Rehman, M., Wang, M., 2019. Knock-Down of Gossypol-Inducing Cytochrome P450 Genes Reduced Deltamethrin Sensitivity in Spodoptera exigua (Hübner). IJMS 20, 2248. https://doi.org/10.3390/ijms20092248

Hafeez, M., Liu, S., Yousaf, H.K., Jan, S., Wang, R.-L., Fernández-Grandon, G.M., Li, X., Gulzar, A., Ali, B., Rehman, M., Ali, S., Fahad, M., Lu, Y., Wang, M., 2020a. RNA interference-mediated knockdown of a cytochrome P450 gene enhanced the toxicity of α-cypermethrin in xanthotoxin-fed larvae of Spodoptera exigua (Hübner). Pesticide Biochemistry and Physiology 162, 6–14. https://doi.org/10.1016/j.pestbp.2019.07.003

Hafeez, M., Qasim, M., Ali, S., Yousaf, H.K., Waqas, M., Ali, E., Ahmad, M.A., Jan, S., Bashir, M.A., Noman, A., Wang, M., Gharmh, H.A., Khan, K.A., 2020b. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi Journal of Biological Sciences 27, 77–87. https://doi.org/10.1016/j.sjbs.2019.05.005

Halliday W, Farnsworth D, Feyereisen R. 1986. Hemolymph ecdysteroid titer and midgut ecdysone 20-monooxygenase activity during the last larval stage of Diploptera punctata. Insect Biochemistry 16: 627-634

Hallstrom, I. 1985. Genetic regulation of the cytochrome P-450 system in Drosophila melanogaster. II. Localization of some genes regulating cytochrome P- 450 activity. Chem Biol Interact, 56, 173-84.

Hallstrom, I. and Blanck, A. 1985. Genetic regulation of the cytochrome P-450 system in Drosophila melanogaster. I. Chromosomal determination of some cytochrome P- 450-dependent reactions. Chem Biol Interact, 56, 157-171.

Hällström, I., Blanck, A., Atuma, S., 1984. Genetic variation in cytochrome P-450 and xenobiotic metabolism in Drosophila melanogaster. Biochemical Pharmacology 33, 13–20. https://doi.org/10.1016/0006-2952(84)90364-2

Hallstrom, I., Magnusson, J., Ramel, C., 1982. Relation between the somatic toxicity of dimethylnitrosamine and a genetically determined variation in the level and induction of cytochrome P450 in Drosophila melanogaster. Mutat Res 92, 161-168.

Halon, E., Eakteiman, G., Moshitzky, P., Elbaz, M., Alon, M., Pavlidi, N., Vontas, J., Morin, S., 2015. Only a minority of broad-range detoxification genes respond to a variety of phytotoxins in generalist Bemisia tabaci species. Sci Rep 5, 17975. https://doi.org/10.1038/srep17975

Hamada, A., Stam, L., Nakao, T., Kawashima, M., Banba, S., 2020. Differential metabolism of neonicotinoids by brown planthopper, Nilaparvata lugens, CYP6ER1 variants. Pesticide Biochemistry and Physiology 165, 104538. https://doi.org/10.1016/j.pestbp.2020.02.004

Hamada, A., Wahl, G.D., Nesterov, A., Nakao, T., Kawashima, M., Banba, S., 2019. Differential metabolism of imidacloprid and dinotefuran by Bemisia tabaci CYP6CM1 variants. Pesticide Biochemistry and Physiology 159, 27–33. https://doi.org/10.1016/j.pestbp.2019.05.011

Hamdane D, Zhang H, Hollenberg P. 2008. Oxygen activation by cytochrome P450 monooxygenase. Photosynth Res. 98:657-66. https://doi.org/10.1007/s11120-008-9322-1

Hamdane D, Xia C, Im SC, Zhang H, Kim JJ, Waskell L. 2009. Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284, 11374-84.

Hammock, B D. 1975. NADPH dependent epoxidation of methyl farnesoate to juvenile hormone in the cockroach Blaberus giganteus L. Life Sci 17, 323-8.

Hammock, B.D. and Mumby, S.M. 1978. Inhibition of epoxidation of methyl farnesoate to juvenile hormone III by cockroach corpus allatum homogenates. Pestic. Biochem. Physiol., 9, 39-47.

Hampshire F, Horn D. 1966. Structure of crustecdysone, a crustacean moulting hormone. Chemical Communications: 37-38

Han, J., Rotenberg, D., 2024. Microinjection‐enabled gene silencing in first instar larvae of western flower thrips, Frankliniella occidentalis , reveals vital genes for larval survival. Insect Science 1744-7917.13478. https://doi.org/10.1111/1744-7917.13478

Han, C., Rahman, M.-M., Kim, J., Lueke, B., Nauen, R., 2024. Genome-wide analysis of detoxification genes conferring diamide insecticide resistance in Spodoptera exigua identifies CYP9A40. Chemosphere 367, 143623. https://doi.org/10.1016/j.chemosphere.2024.143623

Han, H., Yang, Y., Hu, J., Wang, Y., Zhao, Z., Ma, R., Gao, L., Guo, Y., 2022. Identification and Characterization of CYP6 Family Genes from the Oriental Fruit Moth (Grapholita molesta) and Their Responses to Insecticides. Insects 13, 300. https://doi.org/10.3390/insects13030300

Han, J., Kim, D.-H., Kim, H.-S., Nelson, D.R., Lee, J.-S., 2017a. Genome-wide identification of 52 cytochrome P450 ( CYP ) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 23, 49–57. https://doi.org/10.1016/j.cbd.2017.06.002

Han, J., Kim, D.-H., Seo, J.S., Kim, I.-C., Nelson, D.R., Puthumana, J., Lee, J.-S., 2017b. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 193, 42–49. https://doi.org/10.1016/j.cbpc.2017.01.001

Han, J., Won, E.-J., Kim, H.-S., Nelson, D.R., Lee, S.-J., Park, H.G., Lee, J.-S., 2015. Identification of the Full 46 Cytochrome P450 ( CYP ) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana. Environ. Sci. Technol. 49, 6982–6992. https://doi.org/10.1021/acs.est.5b01244

Han, Y., Yu, W., Zhang, W., Yang, Y., Walsh, T., Oakeshott, J.G., Wu, Y., 2015. Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera. Pesticide Biochemistry and Physiology 121, 129–135. https://doi.org/10.1016/j.pestbp.2014.12.004

Hancock, P.A., Wiebe, A., Gleave, K.A., Bhatt, S., Cameron, E., Trett, A., Weetman, D., Smith, D.L., Hemingway, J., Coleman, M., Gething, P.W., Moyes, C.L., 2018. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc Natl Acad Sci USA 115, 5938–5943. https://doi.org/10.1073/pnas.1801826115

Hansen, B.H., Altin, D., Hessen, K.M., Dahl, U., Breitholtz, M., Nordtug, T., Olsen, A.J., 2008. Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea: Copepoda). General and Comparative Endocrinology 158, 115–121. https://doi.org/10.1016/j.ygcen.2008.05.013

Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. 2021. Plant cytochrome P450 plasticity and evolution. Mol Plant.14:1244-1265. https://doi.org/10.1016/j.molp.2021.06.028.

Hansen CC, Sørensen M, Veiga TAM, Zibrandtsen JFS, Heskes AM, Olsen CE, Boughton BA, Møller BL, Neilson EHJ. 2018. Reconfigured Cyanogenic Glucoside Biosynthesis in Eucalyptus cladocalyx Involves a Cytochrome P450 CYP706C55. Plant Physiology 178: 1081-1095.

Hardstone, M., Baker, S., Gao, J., Ewer, J., Scott, J., 2006. Deletion of Cyp6d4 does not alter toxicity of insecticides to Drosophila melanogaster. Pesticide Biochemistry and Physiology 84, 236-242.

Hardstone, M., Huang, X., Harrington, L., Scott, J., 2010. Differences in development, glycogen, and lipid content associated with cytochrome P450-mediated permethrin resistance in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 47, 188-198.

Hardstone, M., Komagata, O., Kasai, S., Tomita, T., Scott, J., 2010. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect Mol Biol 19, 717-726.

Hardstone, M., Scott, J., 2010. Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag Sci 66, 1171-1180.

Harrison, T.L., Zangerl, A.R., Schuler, M.A. and Berenbaum, M.R. 2001. Developmental variation in cytochrome P450 expression in Papilio polyxenes in response to xanthotoxin, a hostplant allelochemical. Arch. Insect Biochem. Physiol., 48, 179-89.

Harrop, T.W., Denecke, S., Yang, Y.T., Chan, J., Daborn, P.J., Perry, T., Batterham, P., 2018. Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster: Nitenpyram activation by a P450 in D. melanogaster. Pest. Manag. Sci 74, 1616–1622. https://doi.org/10.1002/ps.4852

Harrop, T.W.R., Pearce, S.L., Daborn, P.J., Batterham, P., 2014. Whole-Genome Expression Analysis in the Third Instar Larval Midgut of Drosophila melanogaster. G3 Genes|Genomes|Genetics 4, 2197–2205. https://doi.org/10.1534/g3.114.013870

Harrop, T.W.R., Sztal, T., Lumb, C., Good, R.T., Daborn, P.J., Batterham, P., Chung, H., 2014. Evolutionary Changes in Gene Expression, Coding Sequence and Copy-Number at the Cyp6g1 Locus Contribute to Resistance to Multiple Insecticides in Drosophila. PLoS ONE 9, e84879. https://doi.org/10.1371/journal.pone.0084879

Hatano, R., Scott, J.G., 1993. Anti-P450lpr antiserum inhibits the activation of chlorpyrifos to chrorpyriphos oxon in house fly microsomes. Pesticide Biochemistry and Physiology 45, 228–233.

Hatano, R., Scott, J.G., Dennehy, T.J., 1992. Enhanced Activation Is the Mechanism of Negative Cross-Resistance to Chlorpyrifos in the Dicofol-IR Strain of Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology 85, 1088–1091. https://doi.org/10.1093/jee/85.4.1088

Hayaishi O. 1974. General properties and biological functions of oxygenases. In: Molecular mechanisms of oxygen activation. Hayaishi O. (ed.) Academic Press pp. 1-28.

Hayaishi O, Katagiri M, Rothberg S 1955. Mechanism of the pyrocatechelase reaction. J Am Chem Soc 77:5450–5451

Hayward, A., Beadle, K., Singh, K.S., Exeler, N., Zaworra, M., Almanza, M.-T., Nikolakis, A., Garside, C., Glaubitz, J., Bass, C., Nauen, R., 2019. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat Ecol Evol 3, 1521–1524. https://doi.org/10.1038/s41559-019-1011-2

Hayward, A., Hunt, B.J., Haas, J., Bushnell‐Crowther, E., Troczka, B.J., Pym, A., Beadle, K., Field, J., Nelson, D.R., Nauen, R., Bass, C., 2023. A cytochrome P450 insecticide detoxification mechanism is not conserved across the Megachilidae family of bees. Evolutionary Applications eva.13625. https://doi.org/10.1111/eva.13625

He, C., Liang, J., Liu, S., Zeng, Y., Wang, S., Wu, Q., Xie, W., Zhang, Y., 2020. Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: Potential involvement in susceptibility to imidacloprid. Pesticide Biochemistry and Physiology 162, 29–35. https://doi.org/10.1016/j.pestbp.2019.07.018

He, H., Chen, A.C., Davey, R.B. and Ivie, G.W. 2002. Molecular cloning and nucleotide sequence of a new P450 gene, CYP319A1, from the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol., 32, 303-309.

He, H., Crabbe, M.J.C., Ren, Z., 2022. Detoxification Gene Families at the Genome-Wide Level of Rhus Gall Aphid Schlechtendalia chinensis. Genes 13, 1627. https://doi.org/10.3390/genes13091627

He, L., Shi, Y., Ding, W., Huang, H., He, H., Xue, J., Gao, Q., Zhang, Z., Li, Y. and Qiu, L. 2023. Cytochrome P450s genes CYP321A9 and CYP9A58 contribute to host plant adaptation in the fall armyworm Spodoptera frugiperda. Pest Manag Sci, 79,1783-1790. https://doi.org/10.1002/ps.7355

He, M., Zhao, X., Chen, X., Shi, Y., Wu, S., Xia, F., Li, R., Li, M., Wan, H., Li, J., Liao, X., 2023. Overexpression of NADPH-cytochrome P450 reductase is associated with sulfoxaflor resistance and neonicotinoid cross-resistance in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology 194, 105467. https://doi.org/10.1016/j.pestbp.2023.105467

He, P., Zhang, Y.-F., Hong, D.-Y., Wang, J., Wang, X.-L., Zuo, L.-H., Tang, X.-F., Xu, W.-M., He, M., 2017. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 18, 219. https://doi.org/10.1186/s12864-017-3592-y

Hearn, J., Djoko Tagne, C.S., Ibrahim, S.S., Tene‐Fossog, B., Mugenzi, L.M.J., Irving, H., Riveron, J.M., Weedall, G.D., Wondji, C.S., 2022. Multi‐omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa. Molecular Ecology 31, 3642–3657. https://doi.org/10.1111/mec.16497

Heckel, D.G., 2014. Insect Detoxification and Sequestration Strategies, in: Voelckel, C., Jander, G. (Eds.), Annual Plant Reviews. John Wiley & Sons, Ltd, Chichester, UK, pp. 77–114. https://doi.org/10.1002/9781118829783.ch3

Heidel-Fischer, H.M., Vogel, H., 2015. Molecular mechanisms of insect adaptation to plant secondary compounds. Current Opinion in Insect Science 8, 8–14. https://doi.org/10.1016/j.cois.2015.02.004

Helvig, C., Koener, J.F., Unnithan, G.C., Feyereisen, R., 2004. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proceedings of the National Academy of Sciences 101, 4024–4029. https://doi.org/10.1073/pnas.0306980101

Helvig, C., Tijet, N., Feyereisen, R., Walker, F.A., Restifo, L.L., 2004. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (ω-1)-hydroxylation. Biochemical and Biophysical Research Communications 325, 1495–1502. https://doi.org/10.1016/j.bbrc.2004.10.194

Hentze, J.L., Moeller, M.E., Jørgensen, A.F., Bengtsson, M.S., Bordoy, A.M., Warren, J.T., Gilbert, L.I., Andersen, O., Rewitz, K.F., 2013. Accessory Gland as a Site for Prothoracicotropic Hormone Controlled Ecdysone Synthesis in Adult Male Insects. PLoS ONE 8, e55131. https://doi.org/10.1371/journal.pone.0055131

Herman, N.A., Zhang, W., 2016. Enzymes for fatty acid-based hydrocarbon biosynthesis. Current Opinion in Chemical Biology 35, 22–28. https://doi.org/10.1016/j.cbpa.2016.08.009

Hikino, H., Oizumi, Y., Takemoto, T., 1975. Steroid metabolism in Bombyx mori, I. Catabolism of ponasterone A and ecdysterone in Bombyx mori. Hoppe-Seyler's Z Physiol Chem 356, 309-314.

Hilliou, F., Chertemps, T., Maïbèche, M., Le Goff, G., 2021. Resistance in the Genus Spodoptera: Key Insect Detoxification Genes. Insects 12, 544. https://doi.org/10.3390/insects12060544

Hirata, K., Jouraku, A., Kuwazaki, S., Shimomura, H., Iwasa, T., 2017. Studies on Aphis gossypii cytochrome P450s CYP6CY22 and CYP6CY13 using an in vitro system. Journal of Pesticide Science 42, 97–104. https://doi.org/10.1584/jpestics.D17-006

Hlavica, P., 2011. Insect cytochromes P450: Topology of structural elements predicted to govern catalytic versatility. Journal of Inorganic Biochemistry 105, 1354–1364. https://doi.org/10.1016/j.jinorgbio.2011.05.003

Hoang, K., Matzkin, L.M., Bono, J.M., 2015. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations. Mol Ecol 24, 5186–5199. https://doi.org/10.1111/mec.13388

Hodgson, E. 1985. Microsomal monooxygenases. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Kerkut, G. A., and Gilbert, L. I., eds., pp. 225-331. Pergamon, Oxford.

Hodgson, E., Tate, L., Kulkarni, A., Plapp, F., 1974. Microsomal cytochrome P-450: characterization and possible role in insecticide resistance in Musca domestica. J Agric Food Chem 22, 360-366.

Hoffmann KH. 1997. Ecdysteroids in adult females of a “walking worm”: Euperipatoides leuckartii Onychophora, Peripatopsidae. Invertebrate Reproduction and Development 32: 27-30

Hoffmann, K., Gowin, J., Hartfelder, K., Korb, J., 2014. The Scent of Royalty: A P450 Gene Signals Reproductive Status in a Social Insect. Molecular Biology and Evolution 31, 2689–2696. https://doi.org/10.1093/molbev/msu214

Hoggard, N. and Rees, H.H. 1988. Reversible activation-inactivation of mitochondrial ecdysone 20-mono-oxygenase: a possible role for phosphorylation-dephosphorylation. J Insect Physiol, 34, 647-653.

Hoggard, N., Fisher, M.J. and Rees, H.H. 1989. Possible role for covalent modification in the reversible activation of ecdysone 20- monooxygenase activity. Arch. Insect Biochem. Physiol., 10, 241-253.

Hoi, K.K., Daborn, P.J., Battlay, P., Robin, C., Batterham, P., O’Hair, R.A.J., Donald, W.A., 2014. Dissecting the Insect Metabolic Machinery Using Twin Ion Mass Spectrometry: A Single P450 Enzyme Metabolizing the Insecticide Imidacloprid in Vivo. Anal. Chem. 86, 3525–3532. https://doi.org/10.1021/ac404188g

Højland, Dorte H., Jensen, K.-M.V., Kristensen, M., 2014. Expression of Xenobiotic Metabolizing Cytochrome P450 Genes in a Spinosad-Resistant Musca domestica L. Strain. PLoS ONE 9, e103689. https://doi.org/10.1371/journal.pone.0103689

Højland, Dorte H, Vagn Jensen, K.-M., Kristensen, M., 2014. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains: P450 gene expression in field and laboratory Musca domestica L. strains. Pest. Manag. Sci. 70, 1237–1242. https://doi.org/10.1002/ps.3681

Holze, H., Schrader, L., Buellesbach, J., 2021. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity 126, 219–234. https://doi.org/10.1038/s41437-020-00380-y

Homma, Y., Mita, K., Nakamura, Y., Namiki, T., Noda, H., Shinoda, T., Togawa, T., 2020. Identification of novel genes expressed highly and selectively in the corpora allata of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 55, 45–54. https://doi.org/10.1007/s13355-019-00652-y

Honda Y, Ishiguro W, Ogihara MH, Kataoka H, Taylor D. 2017. Identification and expression of nuclear receptor genes and ecdysteroid titers during nymphal development in the spider Agelena silvatica. General and Comparative Endocrinology 247: 183-198

Hong, S., Guo, Q., Wang, W., Hu, S., Fang, F., Lv, Y., Yu, J., Zou, F., Lei, Z., Ma, K., Ma, L., Zhou, D., Sun, Y., Zhang, D., Shen, B., Zhu, C., 2014. Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect Biochemistry and Molecular Biology 55, 39–50. https://doi.org/10.1016/j.ibmb.2014.10.007

Hooven, L.A., Sherman, K.A., Butcher, S., Giebultowicz, J.M., 2009. Does the Clock Make the Poison? Circadian Variation in Response to Pesticides. PLoS ONE 4, e6469. https://doi.org/10.1371/journal.pone.0006469

Hopkins, B., Longnecker, M., Pietrantonio, P., 2010. Transcriptional overexpression of CYP6B8/CYP6B28 and CYP6B9 is a mechanism associated with cypermethrin survivorship in field-collected Helicoverpa zea (Lepidoptera: Noctuidae) moths. Pest Manag Sci 67, 21-25.

Horike N, Sonobe H. 1999. Ecdysone 20-monooxygenase in eggs of the silkworm, Bombyx mori: enzymatic properties and developmental changes. Arch Insect Biochem Physiol 41: 9-17

Horike, N., Takemori, H., Nonaka, Y., Sonobe, H., Okamoto, M 2000. Molecular cloning of NADPH-cytochrome P450 oxidoreductase from silkworm eggs. Its involvement in 20-hydroxyecdysone biosynthesis during embryonic development. Eur J Biochem 267, 6914-20.

Hou, J., Guo, X., Li, Haolin, Zhang, W., Zhang, Y., Zhang, F., Li, Honghong, Wei, J., Li, X., 2023. Precise Regulation of Juvenile Hormone III R -Stereoisomer Synthesis by Apis mellifera through Specifically Binding Methyl-(2 E ,6 E )-farnesoate and Strictly Controlling Its Titer. J. Agric. Food Chem. acs.jafc.3c05385. https://doi.org/10.1021/acs.jafc.3c05385

Hou, N., Zhou, Z., Chen, Y., Tian, J., Zhang, Y., Liu, Z., 2021. RNA interference in Pardosa pseudoannulata , an important predatory enemy against several insect pests, through ingestion of dsRNA ‐expressing Escherichia coli . Insect Molecular Biology 30, 624–631. https://doi.org/10.1111/imb.12731

Hou, W.-T., Staehelin, C., Elzaki, M.E.A., Hafeez, M., Luo, Y.-S., Wang, R.-L., 2021. Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 178, 104946. https://doi.org/10.1016/j.pestbp.2021.104946

Hovemann, B T., Sehlmeyer, F., Malz, J. 1997. Drosophila melanogaster NADPH-cytochrome P450 oxidoreductase: pronounced expression in antennae may be related to odorant clearance. Gene 189, 213-9.

Hsu M-H, Baer BR, Rettie AE, Johnson EF 2017 The Crystal Structure of Cytochrome P450 4B1 CYP4B1 Monooxygenase Complexed with Octane Discloses Several Structural Adaptations for ω-Hydroxylation. J Biol Chem. 293: 5610-5621

Hu, B., Huang, H., Hu, S., Ren, M., Wei, Q., Tian, X., Esmail Abdalla Elzaki, M., Bass, C., Su, J., Reddy Palli, S., 2021. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genet 17, e1009403. https://doi.org/10.1371/journal.pgen.1009403

Hu, B., Huang, H., Wei, Q., Ren, M., Mburu, D.K., Tian, X., Su, J., 2019a. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua. Pest. Manag. Sci. 75, 2009–2019. https://doi.org/10.1002/ps.5316

Hu, B., Xing, Z., Dong, H., Chen, X., Ren, M., Liu, K., Rao, C., Tan, A., Su, J., 2024. Cytochrome P450 CYP6AE70 Confers Resistance to Multiple Insecticides in a Lepidopteran Pest, Spodoptera exigua. J. Agric. Food Chem. 72, 23141–23150. https://doi.org/10.1021/acs.jafc.4c04872

Hu, B., Zhang, S., Ren, M., Tian, X., Wei, Q., Mburu, D.K., Su, J., 2019b. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Insect Science 26, 199–216. https://doi.org/10.1111/1744-7917.12538

Hu, C., Liu, Y.-X., Zhang, S.-P., Wang, Y.-Q., Gao, P., Li, Y.-T., Yang, X.-Q., 2023. Transcription Factor AhR Regulates Glutathione S -Transferases Conferring Resistance to lambda -Cyhalothrin in Cydia pomonella. J. Agric. Food Chem. 71, 5230–5239. https://doi.org/10.1021/acs.jafc.3c00002

Hu GL, Lu LY, Li YS, Su X, Dong WY, Zhang BZ, Liu RQ, Shi MW, Wang HL, Chen XL.2022. CYP4CJ6-mediated resistance to two neonicotinoid insecticides in Sitobion miscanthi (Takahashi). Bull Entomol Res. 112,646-655. https://doi.org/10.1017/S0007485322000037.

Hu, H., Miaomiao, R., Jianfeng, F., Sufang, H., Xia, W., Elzaki, M.E.A., Chris, B., Palli, S.R., Jianya, S., 2020. Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua. Journal of Hazardous Materials 398, 122971. https://doi.org/10.1016/j.jhazmat.2020.122971

Hu, J., Feng, C., Jun, W., Wenhua, R., Lei, L., Guocheng, F., 2023. Multiple Insecticide Resistance and Associated Metabolic-Based Mechanisms in a Myzus Persicae (Sulzer) Population Collected From Southeast China (preprint). Biology and Life Sciences. https://doi.org/10.20944/preprints202308.0235.v1

Hu, J., Fu, B., Liang, J., Zhang, R., Wei, X., Yang, J., Tan, Q., Xue, H., Gong, P., Liu, S., Huang, M., Du, T., Yin, C., He, C., Ji, Y., Wang, C., Zhang, C., Du, H., Su, Q., Yang, X. and Zhang, Y. 2024. CYP4CS5-mediated thiamethoxam and clothianidin resistance is accompanied by fitness cost in the whitefly Bemisia tabaci. Pest Manag Sci, 80,910-921. https://doi.org/10.1002/ps.7826

Hu, Z., Lin, Q., Chen, H., Li, Z., Yin, F., Feng, X., 2014. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Bull. Entomol. Res. 104, 716–723. https://doi.org/10.1017/S0007485314000510

Huang, H.-J., Cui, J.-R., Guo, Y., Sun, J.-T., Hong, X.-Y., 2018. Roles of LsCYP4DE1 in wheat adaptation and ethiprole tolerance in Laodelphax striatellus. Insect Biochemistry and Molecular Biology 101, 14–23. https://doi.org/10.1016/j.ibmb.2018.07.003

Huang, M., Fu, B., Yin, C., Gong, P., Liu, S., Yang, J., Wei, X., Liang, J., Xue, H., He, C., Du, T., Wang, C., Ji, Y., Hu, J., Zhang, R., Du, H., Zhang, Y., Yang, X., 2024. Cytochrome P450 CYP6EM1 Underpins Dinotefuran Resistance in the Whitefly Bemisia tabaci. J. Agric. Food Chem. 72, 5153–5164. https://doi.org/10.1021/acs.jafc.3c06953

Huang, S., Sun, D., Brattsten, L., 2008. Novel cytochrome P450s, CYP6BB1 and CYP6P10, from the salt marsh mosquito Aedes sollicitans (Walker) (Diptera: Culicidae). Arch Insect Biochem Physiol 67, 139-154.

Huang, X., Kaufman, P.E., Athrey, G.N., Fredregill, C., Alvarez, C., Shetty, V., Slotman, M.A., 2023. Potential key genes involved in metabolic resistance to malathion in the southern house mosquito, Culex quinquefasciatus, and functional validation of CYP325BC1 and CYP9M12 as candidate genes using RNA interference. BMC Genomics 24, 160. https://doi.org/10.1186/s12864-023-09241-4

Huang, X., Kaufman, P.E., Athrey, G.N., Fredregill, C., Slotman, M.A., 2024. Unveiling candidate genes for metabolic resistance to malathion in Aedes albopictus through RNA sequencing-based transcriptome profiling. PLoS Negl Trop Dis 18, e0012243. https://doi.org/10.1371/journal.pntd.0012243

Huang, X., Liu, D., Zhang, R., Shi, X., 2019. Transcriptional Responses in Defense-Related Genes of Sitobion avenae (Hemiptera: Aphididae) Feeding on Wheat and Barley. Journal of Economic Entomology 112, 382–395. https://doi.org/10.1093/jee/toy329

Huang, X., Lv, S., Zhang, Z., Chang, B.H., 2020. Phenotypic and Transcriptomic Response of the Grasshopper Oedaleus asiaticus (Orthoptera: Acrididae) to Toxic Rutin. Front. Physiol. 11, 52. https://doi.org/10.3389/fphys.2020.00052

Huang, X., Whitman, D.W., Ma, J., McNeill, M.R., Zhang, Z., 2017. Diet alters performance and transcription patterns in Oedaleus asiaticus (Orthoptera: Acrididae) grasshoppers. PLoS ONE 12, e0186397. https://doi.org/10.1371/journal.pone.0186397

Huang, Y., 2013. Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pesticide Biochemistry and Physiology 7.

Huang, Y., Liao, M., Yang, Q., Shi, S., Xiao, J., Cao, H., 2020. Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Pesticide Biochemistry and Physiology 162, 15–22. https://doi.org/10.1016/j.pestbp.2019.07.008

Huang, Y., Liao, M., Yang, Q., Xiao, J., Hu, Z., Zhou, L., Cao, H., 2018. Transcriptome profiling reveals differential gene expression of detoxification enzymes in Sitophilus zeamais responding to terpinen-4-ol fumigation. Pesticide Biochemistry and Physiology 149, 44–53. https://doi.org/10.1016/j.pestbp.2018.05.008

Huang, Y., Lu, X.-P., Wang, L.-L., Wei, D., Feng, Z.-J., Zhang, Q., Xiao, L.-F., Dou, W., Wang, J.-J., 2015. Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: Possible involvement in susceptibility to malathion. Sci Rep 5, 18394. https://doi.org/10.1038/srep18394

Huang, Y., Shi, S., Wu, H.-L., Yue, S.-L., Liao, M., Cao, H.-Q., 2021. CYP4G7 and CYP4G14 mediate cuticle formation and pigmentation in Tribolium confusum. Journal of Stored Products Research 94, 101881. https://doi.org/10.1016/j.jspr.2021.101881

Huang, Y., Wang, Z., Zha, S., Wang, Y., Jiang, W., Liao, Y., Song, Z., Qi, Z., Yin, Y., 2016. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii. PLoS ONE 11, e0146953. https://doi.org/10.1371/journal.pone.0146953

Huang, Y., Wu, P., Zheng, J., Qiu, L., 2022. Identification of cis-acting elements in response to fenvalerate in the CYP6B7 promoter of Helicoverpa armigera. Pesticide Biochemistry and Physiology 183, 105060. https://doi.org/10.1016/j.pestbp.2022.105060

Huang, Y., Xu, L., Zheng, J., Wu, P., Zhang, Y., Qiu, L., 2024. Identification and characterization of both cis- and trans-regulators mediating fenvalerate-induced expression of CYP6B7 in Helicoverpa armigera. International Journal of Biological Macromolecules 258, 128995. https://doi.org/10.1016/j.ijbiomac.2023.128995

Huang, Y., Yin, H., Zhu, Z., Jiang, X., Li, X., Dong, Y., Sheng, C., Liao, M., Cao, H., 2021. Expression and functional analysis of cytochrome P450 genes in the integument of the oriental armyworm, Mythimna separata ( Walker ). Pest Manag Sci 77, 577–587. https://doi.org/10.1002/ps.6058

Huang, Y., Zheng, J., Wu, P., Zhang, Y., Qiu, L., 2023. A Comparative Study of Transcriptional Regulation Mechanism of Cytochrome P450 CYP6B7 between Resistant and Susceptible Strains of Helicoverpa armigera. J. Agric. Food Chem. 71, 9314–9323. https://doi.org/10.1021/acs.jafc.3c01593

Huang, Y., Zheng, J., Wu, P., Zhang, Y., Qiu, L., 2024. Functional study on candidate regulators mediating the expression of CYP6B7 induced by fenvalerate in a susceptible strain of Helicoverpa armigera. Pesticide Biochemistry and Physiology 202, 105918. https://doi.org/10.1016/j.pestbp.2024.105918

Huang Y, Zheng J, Wu P, Zhang Y, Qiu L. 2023. A Comparative Study of Transcriptional Regulation Mechanism of Cytochrome P450 CYP6B7 between Resistant and Susceptible Strains of Helicoverpa armigera. J Agric Food Chem. 71:9314-9323. https://doi.org/10.1021/acs.jafc.3c01593

Huber, D., Erickson, M., Leutenegger, C., Bohlmann, J., Seybold, S., 2007. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa. Insect Mol Biol 16, 335-349.

Hughes, P.B. and Devonshire, A.L. 1982. The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol., 18, 289-297.

Humble, J.L., Carmona-Antoñanzas, G., McNair, C.M., Nelson, D.R., Bassett, D.I., Egholm, I., Bron, J.E., Bekaert, M., Sturm, A., 2019. Genome-wide survey of cytochrome P450 genes in the salmon louse Lepeophtheirus salmonis (Krøyer, 1837). Parasites Vectors 12, 563. https://doi.org/10.1186/s13071-019-3808-x

Hung, C.F., Berenbaum, M.R., Schuler, M.A. 1997. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera: Papilionidae). Insect Biochemistry and Molecular Biology 27, 377–385. https://doi.org/10.1016/S0965-1748(97)00009-X

Hung, C.F., Harrison, T.L., Berenbaum, M.R., Schuler, M.A., 1995. CYP6B3: a second furanocoumarin‐inducible cytochrome P450 expressed in Papilio polyxenes. Insect Molecular Biology 4, 149–160. https://doi.org/10.1111/j.1365-2583.1995.tb00020.x

Hung, C.F., Holzmacher, R., Connolly, E., Berenbaum, M.R., Schuler, M.A., 1996. Conserved promoter elements in the CYP6B gene family suggest common ancestry for cytochrome P450 monooxygenases mediating furanocoumarin detoxification. Proc. Natl. Acad. Sci. U.S.A. 93, 12200–12205. https://doi.org/10.1073/pnas.93.22.12200

Hung, C.F., Prapaipong, H., Berenbaum, M.R., Schuler, M.A., 1995. Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins. Insect Biochemistry and Molecular Biology 25, 89–99. https://doi.org/10.1016/0965-1748(94)00038-J

Hunt, D.W.A., Smirle, M.J., 1988. Partial Inhibition of Pheromone Production in Dendroctonus ponderosae (Coleoptera: Scolytidae) by Polysubstrate Monooxygenase Inhibitors. J. Chem. Ecol. 14, 529-536.

Huo, S. ‐M., Zhang, Y. ‐Y., Song, Z. ‐R., Xiong, X. ‐H., Hong, X. ‐Y., 2021. The potential pigmentation‐related genes in spider mites revealed by comparative transcriptomes of the red form of Tetranychus urticae. Insect Mol Biol 30, 580–593. https://doi.org/10.1111/imb.12727

Ibrahim, S., Amvongo-Adjia, N., Wondji, M., Irving, H., Riveron, J., Wondji, C., 2018. Pyrethroid Resistance in the Major Malaria Vector Anopheles funestus is Exacerbated by Overexpression and Overactivity of the P450 CYP6AA1 Across Africa. Genes 9, 140. https://doi.org/10.3390/genes9030140

Ibrahim, S.S., Kouamo, M.F.M., Muhammad, A., Irving, H., Riveron, J.M., Tchouakui, M., Wondji, C.S., 2024. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/-b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. IJMS 25, 8092. https://doi.org/10.3390/ijms25158092

Ibrahim, S.S., Muhammad, A., Hearn, J., Weedall, G.D., Nagi, S.C., Mukhtar, M.M., Fadel, A.N., Mugenzi, L.J., Patterson, E.I., Irving, H., Wondji, C.S., 2023. Molecular drivers of insecticide resistance in the Sahelo-Sudanian populations of a major malaria vector Anopheles coluzzii. BMC Biol 21, 125. https://doi.org/10.1186/s12915-023-01610-5

Ibrahim, S.S., Ndula, M., Riveron, J.M., Irving, H., Wondji, C.S., 2016a. The P450 CYP 6Z1 confers carbamate/pyrethroid cross‐resistance in a major African malaria vector beside a novel carbamate‐insensitive N485I acetylcholinesterase‐1 mutation. Mol Ecol 25, 3436–3452. https://doi.org/10.1111/mec.13673

Ibrahim, S.S., Riveron, J.M., Bibby, J., Irving, H., Yunta, C., Paine, M.J.I., Wondji, C.S., 2015. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector. PLoS Genet 11, e1005618. https://doi.org/10.1371/journal.pgen.1005618

Ibrahim, S.S., Riveron, J.M., Stott, R., Irving, H., Wondji, C.S., 2016b. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis. Insect Biochemistry and Molecular Biology 68, 23–32. https://doi.org/10.1016/j.ibmb.2015.10.015

Idda, T., Bonas, C., Hoffmann, J., Bertram, J., Quinete, N., Schettgen, T., Fietkau, K., Esser, A., Stope, M.B., Leijs, M.M., Baron, J.M., Kraus, T., Voigt, A., Ziegler, P., 2020. Metabolic activation and toxicological evaluation of polychlorinated biphenyls in Drosophila melanogaster. Sci Rep 10, 21587. https://doi.org/10.1038/s41598-020-78405-z

Iga, M., Kataoka, H., 2012. Recent Studies on Insect Hormone Metabolic Pathways Mediated by Cytochrome P450 Enzymes. Biological & Pharmaceutical Bulletin 35, 838–843. https://doi.org/10.1248/bpb.35.838

Ilias, A., Lagnel, J., Kapantaidaki, D.E., Roditakis, E., Tsigenopoulos, C.S., Vontas, J., Tsagkarakou, A., 2015. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC Genomics 16, 939. https://doi.org/10.1186/s12864-015-2161-5

Inceoglu, A., Waite, T., Christiansen, J., McAbee, R., Kamita, S., Hammock, B., Cornel, A., 2009. A rapid luminescent assay for measuring cytochrome P450 activity in individual larval Culex pipiens complex mosquitoes (Diptera: Culicidae). J Med Entomol 46, 83-92.

Ingham, V.A., Jones, C.M., Pignatelli, P., Balabanidou, V., Vontas, J., Wagstaff, S.C., Moore, J.D., Ranson, H., 2014. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics 15, 1018. https://doi.org/10.1186/1471-2164-15-1018

Ingham, V.A., Pignatelli, P., Moore, J.D., Wagstaff, S., Ranson, H., 2017. The transcription factor Maf-S regulates metabolic resistance to insecticides in the malaria vector Anopheles gambiae. BMC Genomics 18, 669. https://doi.org/10.1186/s12864-017-4086-7

Ingham, V.A., Wagstaff, S., Ranson, H., 2018. Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat Commun 9, 5282. https://doi.org/10.1038/s41467-018-07615-x

Ioannidis P, Simao FA, Waterhouse RM, Manni M, Seppey M, Robertson HM, Misof B, Niehuis O, Zdobnov EM 2017. Genomic Features of the Damselfly Calopteryx splendens Representing a Sister Clade to Most Insect Orders. Genome Biology and Evolution 9: 415-430

Irving, H., Riveron, J.M., Ibrahim, S.S., Lobo, N.F., Wondji, C.S., 2012. Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity 109, 383–392. https://doi.org/10.1038/hdy.2012.53

Ishak, I.H., Kamgang, B., Ibrahim, S.S., Riveron, J.M., Irving, H., Wondji, C.S., 2017. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes. PLoS Negl Trop Dis 11, e0005302. https://doi.org/10.1371/journal.pntd.0005302

Ishak, I.H., Riveron, J.M., Ibrahim, S.S., Stott, R., Longbottom, J., Irving, H., Wondji, C.S., 2016. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Sci Rep 6, 24707. https://doi.org/10.1038/srep24707

Ishikawa, C., Yoshinaga, N., Aboshi, T., Nishida, R., Mori, N., 2009. Efficient incorporation of free oxygen into volicitin in Spodoptera litura common cutworm larvae. Biosci Biotechnol Biochem 73, 1883-1885.

Ismail, H.M., O’Neill, P.M., Hong, D.W., Finn, R.D., Henderson, C.J., Wright, A.T., Cravatt, B.F., Hemingway, J., Paine, M.J.I., 2013. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions. Proc. Natl. Acad. Sci. U.S.A. 110, 19766–19771. https://doi.org/10.1073/pnas.1320185110

Ito, Y., Yasuda, A., Sonobe, H., 2008. Synthesis and phosphorylation of ecdysteroids during ovarian development in the silkworm, Bombyx mori. Zoolog Sci 25, 721-727.

Itoh, Y., Shimotsuma, Y., Jouraku, A., Dermauw, W., Van Leeuwen, T., Osakabe, M., 2022. Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae. Pesticide Biochemistry and Physiology 181, 105000. https://doi.org/10.1016/j.pestbp.2021.105000

Itokawa, K., Komagata, O., Kasai, S., Masada, M., Tomita, T., 2011. Cis-acting mutation and duplication: History of molecular evolution in a P450 haplotype responsible for insecticide resistance in Culex quinquefasciatus. Insect Biochemistry and Molecular Biology 41, 503–512. https://doi.org/10.1016/j.ibmb.2011.04.002

Itokawa, K., Komagata, O., Kasai, S., Ogawa, K., Tomita, T., 2016. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci Rep 6, 24652. https://doi.org/10.1038/srep24652

Itokawa, K., Komagata, O., Kasai, S., Tomita, T., 2015. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus. Insect Biochemistry and Molecular Biology 66, 96–102. https://doi.org/10.1016/j.ibmb.2015.10.006

Ivanov, A S., Gnedenko, O. V., Molnar, A A, Archakov, A I., Podust, L. M 2010. FMN binding site of yeast NADPH-cytochrome P450 reductase exposed at the surface is highly specific. ACS Chem Biol 5, 767-76.

Ivie, G.W., Bull, D.L., Beier, R.C., Pryor, N.W. and Oertli, E.H. 1983. Metabolic detoxification: mechanism of insect resistance to plant psoralens. Science, 221, 374-376.

Ivie, G., Bull, D.L., Beier, R.C., Pryor, N.W., 1986. Comparative metabolism of [3H]psoralen and [3H]isopsoralen by black swallowtail (Papilio polyxenes Fabr.) caterpillars. J. Chem. Ecol. 12, 871-884.

Jacobsen, N.E., Kövér, K.E., Murataliev, M.B., Feyereisen, R., Walker, F.A., 2006. Structure and stereochemistry of products of hydroxylation of human steroid hormones by a housefly cytochrome P450 (CYP6A1). Magn. Reson. Chem. 44, 467–474. https://doi.org/10.1002/mrc.1767

James MO, Shiverick KT. 1984. Cytochrome P-450-dependent oxidation of progesterone, testosterone, and ecdysone in the spiny lobster, Panulirus argus. Archives of Biochemistry and Biophysics 233: 1-9 https://doi.org/10.1016/0003-9861(84)90595-2

James, M.O., Boyle, S.M., Trapido-Rosenthal, H.G., Smith, W.C., Greenberg, R.M., Shiverick, K.T., 1996. cDNA and Protein Sequence of a Major Form of P450, CYP2L, in the Hepatopancreas of the Spiny Lobster,Panulirus argus. Archives of Biochemistry and Biophysics 329, 31–38. https://doi.org/10.1006/abbi.1996.0188

Jarvis, T.D., Earley, F.G.P., Rees, H.H., 1994. Inhibition of the ecdysteroid biosynthetic pathway in ovarian follicle cells of Locusta migratoria. Pestic Biochem Physiol 48, 153-162.

Jefcoate, C.F. 1978. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol, 52, 258-279.

Jensen, H.R., Scott, I.M., Sims, S., Trudeau, V.L., Arnason, J.T., 2006. Gene Expression Profiles of Drosophila melanogaster Exposed to an Insecticidal Extract of Piper nigrum. J. Agric. Food Chem. 54, 1289–1295. https://doi.org/10.1021/jf052046n

Jensen, H., Scott, I., Sims, S., Trudeau, V., Arnason, J., 2006. The effect of a synergistic concentration of a Piper nigrum extract used in conjunction with pyrethrum upon gene expression in Drosophila melanogaster. Insect Mol Biol 15, 329-339.

Jensen, N.B., Zagrobelny, M., Hjernø, K., Olsen, C.E., Houghton-Larsen, J., Borch, J., Møller, B.L., Bak, S., 2011. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat Commun 2, 273. https://doi.org/10.1038/ncomms1271

Ji, H.-Y., Staehelin, C., Jiang, Y.-P., Liu, S.-W., Ma, Z.-H., Su, Y.-J., Zhang, J.-E., Wang, R.-L., 2019. Tobacco Cutworm (Spodoptera Litura) Larvae Silenced in the NADPH-Cytochrome P450 Reductase Gene Show Increased Susceptibility to Phoxim. IJMS 20, 3839. https://doi.org/10.3390/ijms20153839

Ji, M., Vandenhole, M., De Beer, B., De Rouck, S., Villacis-Perez, E., Feyereisen, R., Clark, R.M., Van Leeuwen, T., 2023. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Nat Commun 14, 4990. https://doi.org/10.1038/s41467-023-40778-w

Ji, R., Lei, J., Chen, I.W., Sang, W., Yang, S., Fang, J., Zhu‐Salzman, K., 2021. Cytochrome P450s CYP380C6 and CYP380C9 in green peach aphid facilitate its adaptation to indole glucosinolate‐mediated plant defense. Pest Manag Sci 77, 148–158. https://doi.org/10.1002/ps.6002

Jia, H., Peiling, L., Yuan, H., Wencai, L., Zhifeng, X., Lin, H., 2019. P8 nuclear receptor responds to acaricides exposure and regulates transcription of P450 enzyme in the two-spotted spider mite, Tetranychus urticae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 224, 108561. https://doi.org/10.1016/j.cbpc.2019.108561

Jia, Q., Yang, L., Wen, J., Liu, S., Wen, D., Luo, W., Wang, W., Palli, S.R., Sheng, L., 2024. Cyp6g2 is the major P450 epoxidase responsible for juvenile hormone biosynthesis in Drosophila melanogaster. BMC Biol 22, 111. https://doi.org/10.1186/s12915-024-01910-4

Jia, S., Wan, P.-J., Zhou, L.-T., Mu, L.-L., Li, G.-Q., 2013. Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper Sogatella furcifera. BMC Molecular Biol 14, 19. https://doi.org/10.1186/1471-2199-14-19

Jia, S., Wan, P., Zhou, L., Mu, L., Li, G., 2015. RNA interference‐mediated silencing of a Halloween gene spookier affects nymph performance in the small brown planthopper Laodelphax striatellus. Insect Science 22, 191–202. https://doi.org/10.1111/1744-7917.12087

Jia, Z.-Q., Liu, D., Peng, Y.-C., Han, Z.-J., Zhao, C.-Q., Tang, T., 2020. Identification of transcriptome and fluralaner responsive genes in the common cutworm Spodoptera litura Fabricius, based on RNA-seq. BMC Genomics 21, 120. https://doi.org/10.1186/s12864-020-6533-0

Jia, Z.Q., Zhan, E.L., Zhang, S.G., Jones, A.K., Zhu, L., Wang, Y.N., Huang, Q.T., Han, Z.J., Zhao, C.Q., 2022. Sublethal doses of broflanilide prevents molting in the fall armyworm, Spodoptera frugiperda via altering molting hormone biosynthesis. Pesticide Biochemistry and Physiology 181, 105017. https://doi.org/10.1016/j.pestbp.2021.105017

Jiang, H.-B., Dou, W., Tang, P.-A., Wang, J.-J., 2012. Transcription and Induction Profiles of Three Novel P450 Genes in Liposcelis bostrychophila (Psocoptera: Liposcelididae). jnl. econ. entom. 105, 560–572. https://doi.org/10.1603/EC11324

Jiang, H., Meng, X., Zhang, N., Ge, H., Wei, J., Qian, K., Zheng, Y., Park, Y., Reddy Palli, S., Wang, J., 2023. The pleiotropic AMPK–CncC signaling pathway regulates the trade-off between detoxification and reproduction. Proc. Natl. Acad. Sci. U.S.A. 120, e2214038120. https://doi.org/10.1073/pnas.2214038120

Jiang, M., Lü, S., Qi, Z., Zhang, Y., 2019. Characterized cantharidin distribution and related gene expression patterns in tissues of blister beetles, Epicauta chinensis. Insect Science 26, 240–250. https://doi.org/10.1111/1744-7917.12512

Jiang, M., Lü, S., Zhang, Y., 2017. Characterization of Juvenile Hormone Related Genes Regulating Cantharidin Biosynthesis in Epicauta chinensis. Sci Rep 7, 2308. https://doi.org/10.1038/s41598-017-02393-w

Jiang, S., Robertson, T., Mostajeran, M., Robertson, A.J., Qiu, X., 2016. Differential gene expression of two extreme honey bee ( Apis mellifera ) colonies showing varroa tolerance and susceptibility: Honey bee gene expression with varroa infestation. Insect Mol Biol 25, 272–282. https://doi.org/10.1111/imb.12217

Jin, M., Liao, C., Fu, X., Holdbrook, R., Wu, K., Xiao, Y., 2019. Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants. Insect Mol Biol 28, 628–636. https://doi.org/10.1111/imb.12578

Jin, M., North, H.L., Peng, Y., Liu, H., Liu, B., Pan, R., Zhou, Yan, Zheng, W., Liu, K., Yang, B., Zhang, L., Xu, Q., Elfekih, S., Valencia-Montoya, W.A., Walsh, T., Cui, P., Zhou, Yongfeng, Wilson, K., Jiggins, C., Wu, K., Xiao, Y., 2023. Adaptive evolution to the natural and anthropogenic environment in a global invasive crop pest, the cotton bollworm. The Innovation 4, 100454. https://doi.org/10.1016/j.xinn.2023.100454

Jin, R., Mao, K., Liao, X., Xu, P., Li, Z., Ali, E., Wan, H., Li, J., 2019. Overexpression of CYP6ER1 associated with clothianidin resistance in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology 154, 39–45. https://doi.org/10.1016/j.pestbp.2018.12.008

Jin, R., Wang, Y., He, B., Zhang, Y., Cai, T., Wan, H., Jin, B.R. and Li, J. 2021. Activator protein-1 mediated CYP6ER1 overexpression in the clothianidin resistance of Nilaparvata lugens (Stål). Pest Manag Sci, 77, 4476-4482. https://doi.org/10.1002/ps.6482

Jin, S., Singh, N.D., Li, L., Zhang, X., Daniell, H., 2015. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase , V ‐ ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13, 435–446. https://doi.org/10.1111/pbi.12355

Jin, Y., Gao, Y., Zhang, H., Wang, L., Yang, K., Dong, H., 2020. Detoxification enzymes associated with butene‐fipronil resistance in Epacromius coerulipes. Pest. Manag. Sci. 76, 227–235. https://doi.org/10.1002/ps.5500

Jin, X., Ma, L., Zhang, F., Zhang, L., Yin, J., Wang, W., Zhao, M., 2024. Identification and Evolution Analysis of the Genes Involved in the 20-Hydroxyecdysone Metabolism in the Mud Crab, Scylla paramamosain: A Preliminary Study. Genes 15, 1586. https://doi.org/10.3390/genes15121586

Jing, D., Prabu, S., Zhang, T., Bai, S., He, K., Zhang, Y., Wang, Z., 2022. Revealing the difference of α-amylase and CYP6AE76 gene between polyphagous Conogethes punctiferalis and oligophagous C. pinicolalis by multiple-omics and molecular biological technique. BMC Genomics 23, 521. https://doi.org/10.1186/s12864-022-08753-9

Jing, T.-X., Yuan, C.-Y., Meng, L.-W., Hou, Q.-L., Liu, X.-Q., Dou, W. et al. 2022. CYP4G100 contributes to desiccation resistance by mediating cuticular hydrocarbon synthesis in Bactrocera dorsalis. Insect Molecular Biology, 31, 772–781. https://doi.org/10.1111/imb.12803

Johnson, P. and Rees, H.H. 1977. The mechanism of C -20 hydroxylation of α-ecdysone in the desert locust, Schistocerca gregaria. Biochem. J., 168, 513-520.

Johnson, R.M., Harpur, B.A., Dogantzis, K.A., Zayed, A., Berenbaum, M.R., 2018. Genomic footprint of evolution of eusociality in bees: floral food use and CYPome “blooms.” Insect. Soc. 65, 445–454. https://doi.org/10.1007/s00040-018-0631-x

Johnson, R.M., Mao, W., Pollock, H.S., Niu, G., Schuler, M.A., Berenbaum, M.R., 2012. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera. PLoS ONE 7, e31051. https://doi.org/10.1371/journal.pone.0031051

Johnson, R., Wen, Z., Schuler, M., Berenbaum, M., 2006. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J Econ Entomol 99, 1046-1050.

Jones, C.M., Haji, K.A., Khatib, B.O., Bagi, J., Mcha, J., Devine, G.J., Daley, M., Kabula, B., Ali, A.S., Majambere, S., Ranson, H., 2013. The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasites Vectors 6, 343. https://doi.org/10.1186/1756-3305-6-343

Jongepier, E., Kemena, C., Lopez‐Ezquerra, A., Belles, X., Bornberg‐Bauer, E., Korb, J., 2018. Remodeling of the juvenile hormone pathway through caste‐biased gene expression and positive selection along a gradient of termite eusociality. J Exp Zool Pt B 330, 296–304. https://doi.org/10.1002/jez.b.22805

Joußen, N., Agnolet, S., Lorenz, S., Schöne, S.E., Ellinger, R., Schneider, B., Heckel, D.G., 2012. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proc. Natl. Acad. Sci. U.S.A. 109, 15206–15211. https://doi.org/10.1073/pnas.1202047109

Joußen, N., Heckel, D., Haas, M., Schuphan, I., Schmidt, B., 2008. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64, 65-73.

Joußen, N., Heckel, D.G., 2021. Saltational evolution of a pesticide‐metabolizing cytochrome P450 in a global crop pest. Pest Manag Sci 77, 3325–3332. https://doi.org/10.1002/ps.6376

Joußen, N., Schuphan, I., Schmidt, B 2010. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum. Chem Biodivers 7, 722-35.

Jurenka, R.A., Subchev, M., Abad, J.-L., Choi, M.-Y., Fabrias, G., 2003. Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proc Natl Acad Sci USA 100, 809-814.

Kaewpa, D., Boonsuepsakul, S., Rongnoparut, P. 2007. Functional expression of mosquito NADPH-cytochrome P450 reductase in Escherichia coli. J Econ Entomol 100, 946-53

Kabbouh, M., Kappler, C., Hetru, C. and Durst, F. 1987. Further characterization of the 2-deoxyecdysone C-2 hydroxylase from Locusta migratoria. Insect Biochem., 17, 1155-1161.

Kalajdzic, P., Markaki, M., Oehler, S., Savakis, C., 2013. Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line. Food and Chemical Toxicology 60, 355–359. https://doi.org/10.1016/j.fct.2013.07.080

Kalajdzic, P., Oehler, S., Reczko, M., Pavlidi, N., Vontas, J., Hatzigeorgiou, A.G., Savakis, C., 2012. Use of Mutagenesis, Genetic Mapping and Next Generation Transcriptomics to Investigate Insecticide Resistance Mechanisms. PLoS ONE 7, e40296. https://doi.org/10.1371/journal.pone.0040296

Kalsi, M., Palli, S.R., 2017a. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochemistry and Molecular Biology 83, 1–12. https://doi.org/10.1016/j.ibmb.2017.02.002

Kalsi, M., Palli, S.R., 2017b. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology 90, 43–52. https://doi.org/10.1016/j.ibmb.2017.09.009

Kalsi, M., Palli, S.R., 2015. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. Insect Biochemistry and Molecular Biology 65, 47–56. https://doi.org/10.1016/j.ibmb.2015.08.002

Kamdem, C., Fouet, C., Gamez, S., White, B.J., 2017. Pollutants and Insecticides Drive Local Adaptation in African Malaria Mosquitoes. Molecular Biology and Evolution 34, 1261–1275. https://doi.org/10.1093/molbev/msx087

Kamiya, E., Yamakawa, M., Shono, T., Kono, Y., 2001. Molecular cloning, nucleotide sequences and gene expression of new cytochrome P450s (CYP6A24, CYP6D3v2) from the pyrethroid resistant housefly, Musca domestica L. (Diptera: Muscidae). Appl. Ent. Zool. 36, 225-229.

Kampouraki, A., Tsakireli, D., Koidou, V., Stavrakaki, M., Kaili, S., Livadaras, I., Grigoraki, L., Ioannidis, P., Roditakis, E., Vontas, J., 2023. Functional characterization of cytochrome P450s associated with pyrethroid resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology 191, 105374. https://doi.org/10.1016/j.pestbp.2023.105374

Kang, J., Kim, J., Choi, K.-W., 2011. Novel Cytochrome P450, cyp6a17, Is Required for Temperature Preference Behavior in Drosophila. PLoS ONE 6, e29800. https://doi.org/10.1371/journal.pone.0029800

Kang, M.-K., Zhou, Y.J., Buijs, N.A., Nielsen, J., 2017. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Fact 16, 74. https://doi.org/10.1186/s12934-017-0683-z

Kao, L.M., Wilkinson, C.F. and Brattsten, L.B. 1995. In vivo effects of 2,4-D and atrazine on cytochrome P-450 and insecticide toxicity in southern armyworm ( Spodoptera eridania) larvae. Pesticide Science, 45, 331-334.

Kapelnikov, A., Zelinger, E., Gottlieb, Y., Rhrissorrakrai, K., Gunsalus, K.C., Heifetz, Y., 2008. Mating induces an immune response and developmental switch in the Drosophila oviduct. Proc. Natl. Acad. Sci. U.S.A. 105, 13912–13917. https://doi.org/10.1073/pnas.0710997105

Kaplanoglu, E., Chapman, P., Scott, I.M., Donly, C., 2017. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci Rep 7, 1762. https://doi.org/10.1038/s41598-017-01961-4

Kaplanoglu, E., Scott, I.M., Vickruck, J., Donly, C., 2024. Role of CYP9E2 and a long non-coding RNA gene in resistance to a spinosad insecticide in the Colorado potato beetle, Leptinotarsa decemlineata. PLoS ONE 19, e0304037. https://doi.org/10.1371/journal.pone.0304037

Kappler, C., Kabbouh, M., Durst, F. and Hoffmann, J.A. 1986. Studies on the C-2 Hydroxylation of 2-Deoxyecdysone in Locusta migratoria. Insect Biochem., 16, 25-32.

Kappler, C., Kabbouh, M., Hetru, C., Durst, F. and Hoffmann, J.A. 1988. Characterization of three hydroxylases involved in the final steps of biosynthesis of the steroid hormone ecdysone in Locusta migratoria (Insecta, Orthoptera). J. Steroid Biochem., 31, 891-898.

Karatolos, N., Williamson, M.S., Denholm, I., Gorman, K., ffrench-Constant, R.H., Bass, C., 2012. Over-Expression of a Cytochrome P450 Is Associated with Resistance to Pyriproxyfen in the Greenhouse Whitefly Trialeurodes vaporariorum. PLoS ONE 7, e31077. https://doi.org/10.1371/journal.pone.0031077

Karimullina, E., Li, Y., Ginjupalli, G.K., Baldwin, W.S., 2012. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor. Aquatic Toxicology 116–117, 69–78. https://doi.org/10.1016/j.aquatox.2012.03.005

Kariyanna, B., Prabhuraj, A., Asokan, R., Ramkumar, G., Venkatesan, T., Gracy, R.G., Mohan, M., 2020. Genome mining and functional analysis of cytochrome P450 genes involved in insecticide resistance in Leucinodes orbonalis (Lepidoptera: Crambidae). Biotechnology and Applied Biochemistry bab.1997. https://doi.org/10.1002/bab.1997

Karunker, I., Benting, J., Lueke, B, Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., Morin, S. 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci Hemiptera: Aleyrodidae. Insect Biochem Mol Biol 38, 634-44

Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B.J., Paine, M.J.I., Morin, S., Vontas, J., 2009. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry and Molecular Biology 39, 697–706. https://doi.org/10.1016/j.ibmb.2009.08.006

Kasai, S. and Scott, J.G. 2000. Overexpression of cytochrome P450 CYP6D1 is associated with monoxygenase-mediated pyrethroid resistance in house flies from Georgia. Pestic. Biochem. Physiol., 68, 34-41.

Kasai, S. and Scott, J.G. 2001a. Cytochrome P450s CYP6D3 and CYP6D1 are part of a P450 gene cluster on autosome 1 in the house fly. Insect Mol. Biol., 10, 191-6.

Kasai, S. and Scott, J.G. 2001b. Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.). Insect Biochem. Mol. Biol., 32, 1-8.

Kasai, S. and Tomita, T. 2003. Male specific expression of a cytochrome P450 (Cyp312a1) in Drosophila melanogaster. Biochem Biophys Res Commun, 300, 894-900.

Kasai, S., Komagata, O., Itokawa, K., Shono, T., Ng, L.C., Kobayashi, M., Tomita, T., 2014. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism. PLoS Negl Trop Dis 8, e2948. https://doi.org/10.1371/journal.pntd.0002948

Kasai, S., Shono, T., Yamakawa, M., 1998. Molecular cloning and nucleotide sequenceof a cytochrome P450 cDNA from a pyrethroid‐resistant mosquito, Culex quinquefasciatus Say. Insect Molecular Biology 7, 185–191. https://doi.org/10.1046/j.1365-2583.1998.72053.x

Kasai, S., Weerasinghe, I.S. and Shono, T. 1998. P450 Monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say Larvae. Arch. Insect Biochem. Physiol., 37, 47-56.

Kasai, S., Weerashinghe, I.S., Shono, T. and Yamakawa, M. 2000. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochem. Mol. Biol., 30, 163-71.

Katsavou, E., Riga, M., Ioannidis, P., King, R., Zimmer, C.T., Vontas, J., 2022. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. Pesticide Biochemistry and Physiology 181, 105005. https://doi.org/10.1016/j.pestbp.2021.105005

Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, Donath A, Gimnich F, Frandsen PB, Zwick A, Dos Reis M, Barber JR, Peters RS, Liu S, Zhou X, Mayer C, Podsiadlowski L, Storer C, Yack JE, Misof B, Breinholt JW. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc Natl Acad Sci U S A. 116:22657-22663. https://doi.org/10.1073/pnas.1907847116

Kawashima A, Satta Y. 2014. Substrate-dependent evolution of cytochrome P450: rapid turnover of the detoxification-type and conservation of the biosynthesis-type. PLoS One 9: e100059

Kayser, H. and Eilinger, P. 2001. Metabolism of diafenthiuron by microsomal oxidation: procide activation and inactivation as mechanisms contributing to selectivity. Pest Management Science, 57, 975-980.

Kayser, H., Winkler, T. and Spindler-Barth, M. 1997. 26-hydroxylation of ecdysteroids is catalyzed by a typical cytochrome P-450-dependent oxidase and related to ecdysteroid resistance in an insect cell line. European Journal of Biochemistry, 248, 707-16.

Kayser, H., Eilinger, P., Piechon, P., Wagner, T., 2011. C-26 vs. C-27 Hydroxylation of insect steroid hormones: Regioselectivity of a microsomal cytochrome P450 from a hormone-resistant cell line. Archives of Biochemistry and Biophysics 513, 27–35. https://doi.org/10.1016/j.abb.2011.06.011

Kayser, H., Ertl, P., Eilinger, P., Spindler-Barth, M. and Winkler, T. 2002. Diastereomeric ecdysteroids with a cyclic hemiacetal in the side chain produced by cytochrome P450 in hormonally resistant insect cells. Arch Biochem Biophys, 400, 180-7.

Keeling, C., Tittiger, C., MacLean, M., Blomquist, G.J., 2021. Pheromone production in bark beetles, in: Insect Pheromone Biochemistry and Molecular Biology. Elsevier, pp. 123–162. https://doi.org/10.1016/B978-0-12-819628-1.00004-3

Keeling, C.I., Henderson, H., Li, M., Dullat, H.K., Ohnishi, T., Bohlmann, J., 2013. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. Insect Biochemistry and Molecular Biology 43, 1142–1151. https://doi.org/10.1016/j.ibmb.2013.10.001

Keeling, C.I., Li, M., Sandhu, H.K., Henderson, H., Yuen, M.M.S., Bohlmann, J., 2016. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. Insect Biochemistry and Molecular Biology 70, 170–183. https://doi.org/10.1016/j.ibmb.2016.01.002

Kefi, M., Balabanidou, V., Douris, V., Lycett, G., Feyereisen, R., Vontas, J., 2019. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. Insect Biochemistry and Molecular Biology 110, 52–59. https://doi.org/10.1016/j.ibmb.2019.04.018

Kefi, M., Charamis, J., Balabanidou, V., Ioannidis, P., Ranson, H., Ingham, V.A., Vontas, J., 2021. Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs. BMC Genomics 22, 891. https://doi.org/10.1186/s12864-021-08205-w

Kefi M, Konstantinos P, Balabanidou V, Sarafoglou C, Tsakireli D, Douris V, Monastirioti M, Maréchal JD, Feyereisen R, Vontas J. Insights into unique features of Drosophila CYP4G enzymes. Insect Biochem Mol Biol. 2024 164:104041. https://doi.org/10.1016/j.ibmb.2023.104041.

Kengne-Ouafo, J.A., Kouamo, M., Muhammad, A., Tepa, A., Ntadoun, S., Mugenzi, L., Tekoh, T., Hearn, J., Tchouakui, M., Wondji, M., Ibrahim, S.S., Wondji, C.S., 2024. A single E205D allele of a key P450 CYP6P3 is driving metabolic pyrethroid resistance in the major African malaria vector Anopheles gambiae (preprint). Genomics. https://doi.org/10.1101/2024.02.18.580859

Kennaugh, L., Pearce D., Daly J. C. and Hobbs A. A. 1993. A Piperonyl Butoxide Synergizable Resistance to Permethrin in Helicoverpa armigera Which Is Not Due to Increased Detoxification by Cytochrome P450. Pestic. Biochem. Physiol., 45, 234-241.

Khan MAQ, Coello W ,Khan AA, Pinto HH. 1972. Some characteristics of the microsomal mixed-function oxidase in the freshwater crayfish, Cambarus. Life Sciences 11: 405-415. https://doi.org/10.1016/0024-3205(72)90248-2

Khan, M., Han, C., Choi, M., Hong, H., Choi, N., Kim, J., 2024. Plasticity in Gene Expression Patterns and CYPSF Gene Possibly Involved in the Etofenprox-Resistant Population of White-Backed Planthopper, Sogatella furcifera. IJMS 25, 13605. https://doi.org/10.3390/ijms252413605 [CYPSF is CYP6CW2]

Kientega, M., Clarkson, C.S., Traoré, N., Hui, T.-Y.J., O’Loughlin, S., Millogo, A., Stephane, E.P., Yao, F.A., Belem, A.M.G., Brenas, J., Miles, A., Burt, A., Diabaté, A., 2024. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso . Malaria Journal. https://doi.org/10.1186/s12936-024-05106-7

Killiny, N., Hajeri, S., Tiwari, S., Gowda, S., Stelinski, L.L., 2014. Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri. PLoS ONE 9, e110536. https://doi.org/10.1371/journal.pone.0110536

Kim, D.-H., Choi, B.-S., Kang, H.-M., Park, J.C., Kim, M.-S., Hagiwara, A., Lee, J.-S., 2021. The genome of the marine water flea Diaphanosoma celebensis: Identification of phase I, II, and III detoxification genes and potential applications in marine molecular ecotoxicology. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 37, 100787. https://doi.org/10.1016/j.cbd.2020.100787

Kim, I., Choi, B., Park, W., Kim, Y., Kim, B., Mun, S., Choi, H., Kim, D., 2022. Nuclear receptor HR96 up‐regulates cytochrome P450 for insecticide detoxification in Tribolium castaneum . Pest Manag Sci 78, 230–239. https://doi.org/10.1002/ps.6626

Kim, J., Rahman, M.-M., Han, C., Jeon, J., Kwon, M., Lee, S.H., Omoto, C., 2024. Genome-wide exploration of metabolic-based pyrethroid resistance mechanism in Helicoverpa armigera. J Pest Sci. https://doi.org/10.1007/s10340-024-01797-8

Kim, J., Rahman, M., Han, C., Shin, J., Ahn, S., 2024. Chromosome‐level genome assembly and comparative genomics shed light on Helicoverpa assulta ecology and pest management. Pest Management Science ps.8273. https://doi.org/10.1002/ps.8273

Kim, J. H., Gellatly, K.J., Lueke, B., Kohler, M., Nauen, R., Murenzi, E., Yoon, K.S., Clark, J.M., 2018. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, Pediculus humanus humanus: Detoxification of ivermectin by ABCC4 and CYP6CJ1. Insect Mol Biol 27, 73–82. https://doi.org/10.1111/imb.12348

Kim, J. H., Moreau, J.A., Zina, J.M., Mazgaeen, L., Yoon, K.S., Pittendrigh, B.R., Clark, J.M., 2018. Identification and interaction of multiple genes resulting in DDT resistance in the 91-R strain of Drosophila melanogaster by RNAi approaches. Pesticide Biochemistry and Physiology 151, 90–99. https://doi.org/10.1016/j.pestbp.2018.03.003

Kim, T.-K., Atigadda, V., Brzeminski, P., Fabisiak, A., Tang, E.K.Y., Tuckey, R.C., Slominski, A.T., 2020. Detection of 7-Dehydrocholesterol and Vitamin D3 Derivatives in Honey. Molecules 25, 2583. https://doi.org/10.3390/molecules25112583

King, R., Boaventura, D., Hunt, B.J., Hayward, A., Singh, K.S., Gutbrod, O., Zimmer, C.T., Williamson, M.S., Field, L.M., Bass, C., Nauen, R., 2023. A chromosome-scale genome assembly of the pollen beetle, Brassicogethes aeneus, provides insight into cytochrome P450-mediated pyrethroid resistance. entomologia 43, 639–648. https://doi.org/10.1127/entomologia/2023/1832

King-Jones, K., Horner, M.A., Lam, G., Thummel, C.S., 2006. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metabolism 4, 37–48. https://doi.org/10.1016/j.cmet.2006.06.006

Kirby, M.L., Young, R.J. and Ottea, J.A. 1994. Mixed-Function Oxidase and Glutathione S-Transferase Activities from Field-Collected Larval and Adult Tobacco Budworms, Heliothis virescens (F.). Pestic. Biochem. Physiol., 49, 24-36.

Kirischian, N., McArthur, A G., Jesuthasan, C., Krattenmacher, B, Wilson, J. Y. 2010. Phylogenetic and Functional Analysis of the Vertebrate Cytochrome P450 2 Family. J Mol Evol 72: 56-71

Kishk, A., Stelinski, L.L., Gowda, S., Killiny, N., 2024. Citrus‐mediated gene silencing of cytochrome P450 suppresses insecticide resistance and increases mortality in Diaphorina citri . Pest Management Science 80, 4980–4992. https://doi.org/10.1002/ps.8218

Kiyota, R., Arakawa, M., Yamakawa, R., Yasmin, A., Ando, T., 2011. Biosynthetic pathways of the sex pheromone components and substrate selectivity of the oxidation enzymes working in pheromone glands of the fall webworm, Hyphantria cunea. Insect Biochemistry and Molecular Biology 41, 362–369. https://doi.org/10.1016/j.ibmb.2011.02.004

Klai, K., Chénais, B., Zidi, M., Djebbi, S., Caruso, A., Denis, F., Confais, J., Badawi, M., Casse, N., Mezghani Khemakhem, M., 2020. Screening of Helicoverpa armigera Mobilome Revealed Transposable Element Insertions in Insecticide Resistance Genes. Insects 11, 879. https://doi.org/10.3390/insects11120879

Kleinhesselink, K., Conway, C., Sholer, D., Huang, I., Kimbrell, D.A., 2011. Regulation of Hemocytes in Drosophila Requires dappled Cytochrome b5. Biochem Genet 49, 329–351. https://doi.org/10.1007/s10528-010-9411-7

Klingenberg M. 1958. Pigments of rat liver microsomes. Arch Biochem Biophys. 75:376-86. https://doi.org/10.1016/0003-9861(58)90436-3

Kliot, A., Kontsedalov, S., Ramsey, J.S., Jander, G., Ghanim, M., 2014. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci: Adaptation to nicotine in Bemisia tabaci. Pest. Manag. Sci. 70, 1595–1603. https://doi.org/10.1002/ps.3739

Koener, J. F., Cariño, F. A, Feyereisen, R. 1993. The cDNA and deduced protein sequence of house fly NADPH-cytochrome P450 reductase. Insect Biochem Mol Biol 23, 439-47.https://doi.org/10.1016/0965-1748(93)90051-s

Koenig, C., Bretschneider, A., Heckel, D.G., Grosse-Wilde, E., Hansson, B.S., Vogel, H., 2015. The plastic response of Manduca sexta to host and non-host plants. Insect Biochemistry and Molecular Biology 63, 72–85. https://doi.org/10.1016/j.ibmb.2015.06.001

Kola, V.S.R., Renuka, P., Padmakumari, A.P., Mangrauthia, S.K., Balachandran, S.M., Ravindra Babu, V., Madhav, M.S., 2016. Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas. Front. Physiol. 7. https://doi.org/10.3389/fphys.2016.00020

Komagata, O., Kasai, S., Tomita, T., 2010. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem Mol Biol 40, 146-152.

Komori, M., Kitamura, R., Fukuta, H., Inoue, H., Baba, H., Yoshikawa, K., Kamataki, T., 1993. Transgenic Drosophila carrying mammalian cytochrome P-4501A1: an application to toxicology testing. Carcinogenesis 14, 1683-1688.

Kong, H.G., Kim, H.H., Chung, J., Jun, J., Lee, S., Kim, H.-M., Jeon, S., Park, S.G., Bhak, J., Ryu, C.-M., 2019. The Galleria mellonella Hologenome Supports Microbiota-Independent Metabolism of Long-Chain Hydrocarbon Beeswax. Cell Reports 26, 2451-2464.e5. https://doi.org/10.1016/j.celrep.2019.02.018

Kong, Y., Liu, X.-P., Wan, P.-J., Shi, X.-Q., Guo, W.-C., Li, G.-Q., 2014. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata: Shade gene in Le. decemlineata. Insect Mol Biol 23, 632–643. https://doi.org/10.1111/imb.12115

Konno, T., Hodgson, E., 1989. Studies on Methyl Parathion Resistance in Heliothis wirescens. Pesticide Biochemistra and Physiology 33, 189-199.

Konorov, E.A., Belenikin, M.S., 2018. Prediction of the Ligands of the CYP9e Subfamily of Ant Cytochrome P450 with the ChEBI Ontologies of Chemical and Biological Characteristics. Russ J Bioorg Chem 44, 511–517. https://doi.org/10.1134/S1068162018050072

Korytko, P.J. and Scott, J.G. 1998. CYP6D1 protects thoracic ganglia of houseflies from the neurotoxic insecticide cypermethrin. Arch. Insect Biochem. Physiol., 37, 57-63.

Korytko, P.J., MacLntyre, R.J. and Scott, J.G. 2000. Expression and activity of a house-fly cytochrome P450, CYP6D1, in Drosophila melanogaster. Insect Mol. Biol., 9, 441-9

Korytko, P.J., Quimby, F.W. and Scott, J.G. 2000. Metabolism of phenanthrene by house fly CYP6D1 and dog liver cytochrome P450. J Biochem Mol Toxicol, 14, 20-5.

Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H. 2009. Structure determination of a new juvenile hormone from a heteropteran insect. Org Lett 11: 5234-5237

Kotaki, T., Matsumoto, K., Kaihara, K., Ando, Y., Misaki, K., Shinada, T., 2020. A stereoisomer of JHSB3 with 10S-configuration, 10S-JHSB3, biosynthesized by the corpus allatum of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Appl Entomol Zool 55, 223–229. https://doi.org/10.1007/s13355-020-00674-x

Koto, A., Tamura, M., Wong, P.S., Aburatani, S., Privman, E., Stoffel, C., Crespi, A., McKenzie, S.K., La Mendola, C., Kay, T., Keller, L., 2023. Social isolation shortens lifespan through oxidative stress in ants. Nat Commun 14, 5493. https://doi.org/10.1038/s41467-023-41140-w

Kotze, A.C. 1995. Induced insecticide tolerance in larvae of Lucilia cuprina (Wiedemann)(Diptera: Calliphoridae) following dietary phenobarbital treatment. J. Australian Entomol. Soc., 34, 205-209.

Kotze, A.C. and Sales, N. 1995. Elevated in vitro monooxygenase activity associated with insecticide resistances in field-strain larvae of the Austalian sheep blowfly (Diptera: Calliphoridae). J. Econ. Entomol., 88, 782-787.

Kotze, A.C., Rolls, N.M., 2023. Reduced synergistic efficacy of piperonyl butoxide in combination with alpha-cypermethrin in vitro in an insecticide-resistant strain of the sheep blowfly, Lucilia cuprina. Veterinary Parasitology 317, 109917. https://doi.org/10.1016/j.vetpar.2023.109917

Kotze, A.C., Bagnall, N.H., Ruffell, A.P., George, S.D., Rolls, N.M., 2022. Resistance to dicyclanil and imidacloprid in the sheep blowfly, Lucilia cuprina , in Australia. Pest Management Science 78, 4195–4206. https://doi.org/10.1002/ps.7037

Krempl, C., Heidel-Fischer, H.M., Jiménez-Alemán, G.H., Reichelt, M., Menezes, R.C., Boland, W., Vogel, H., Heckel, D.G., Joußen, N., 2016. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology 78, 69–77. https://doi.org/10.1016/j.ibmb.2016.09.003

Kretschmann, A., Ashauer, R., Preuss, T.G., Spaak, P., Escher, B.I., Hollender, J., 2011. Toxicokinetic Model Describing Bioconcentration and Biotransformation of Diazinon in Daphnia magna. Environ. Sci. Technol. 45, 4995–5002. https://doi.org/10.1021/es104324v

Krieger, R., 2008. Aldrin epoxidation and dihydroisodrin hydroxylation as probes of in vivo and in vitro oxidative metabolic capability of some caterpillars. Pest Manag Sci 64, 622-627.

Krieger, R.I., Feeny, P.P. and Wilkinson, C.F. 1971. Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses ? Science 172: 579-581.

Kshatriya, K., Gershenzon, J., 2024. Disarming the defenses: Insect detoxification of plant defense-related specialized metabolites. Current Opinion in Plant Biology 81, 102577. https://doi.org/10.1016/j.pbi.2024.102577

Kumar, P., Pandit, S.S., Steppuhn, A., Baldwin, I.T., 2014a. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46 ’s role in a nicotine-mediated antipredator herbivore defense. Proc. Natl. Acad. Sci. U.S.A. 111, 1245–1252. https://doi.org/10.1073/pnas.1314848111

Kumar, P., Rathi, P., Schöttner, M., Baldwin, I.T., Pandit, S., 2014b. Differences in Nicotine Metabolism of Two Nicotiana attenuata Herbivores Render Them Differentially Susceptible to a Common Native Predator. PLoS ONE 9, e95982. https://doi.org/10.1371/journal.pone.0095982

Kurlovs, A.H., De Beer, B., Ji, M., Vandenhole, M., De Meyer, T., Feyereisen, R., Clark, R.M., Van Leeuwen, T., 2022. Trans-driven variation in expression is common among detoxification genes in the extreme generalist herbivore Tetranychus urticae. PLoS Genet 18, e1010333. https://doi.org/10.1371/journal.pgen.1010333

Kuruganti, S., Lam, V., Zhou, X., Bennett, G., Pittendrigh, B., Ganguly, R., 2006. High expression of Cyp6g1, a cytochrome P450 gene, does not necessarily confer DDT resistance in Drosophila melanogaster. Gene 388, 43-53.

Kusimo, M.O., Mackenzie-Impoinvil, L., Ibrahim, S.S., Muhammad, A., Irving, H., Hearn, J., Lenhart, A.E., Wondji, C.S., 2022. Pyrethroid resistance in the New World malaria vector Anopheles albimanus is mediated by cytochrome P450 CYP6P5. Pesticide Biochemistry and Physiology 183, 105061. https://doi.org/10.1016/j.pestbp.2022.105061

Kuzin, B.A., Nikitina, E.A., Cherezov, R.O., Vorontsova, J.E., Slezinger, M.S., Zatsepina, O.G., Simonova, O.B., Enikolopov, G.N., Savvateeva-Popova, E.V., 2014. Combination of Hypomorphic Mutations of the Drosophila Homologues of Aryl Hydrocarbon Receptor and Nucleosome Assembly Protein Family Genes Disrupts Morphogenesis, Memory and Detoxification. PLoS ONE 9, e94975. https://doi.org/10.1371/journal.pone.0094975

Lachaise, F., Meister, M.F., Hétru, C., Lafont, R., 1986. Studies on the biosynthesis of ecdysone by the Y-organs of Carcinus maenas. Molecular and Cellular Endocrinology 45, 253–261. https://doi.org/10.1016/0303-7207(86)90155-3

Lafont R, Koolman J. 2009. Diversity of ecdysteroids in animal species. In: Smagghe G, editor. Ecdysone: structures and function. :Springer p.47-71.

Lafont, R., Dauphin-Villemant, C., Warren, J.T., Rees, H., 2012. Ecdysteroid Chemistry and Biochemistry, in: Insect Endocrinology. Elsevier, pp. 106–176. https://doi.org/10.1016/B978-0-12-384749-2.10004-4

Lafont, R., Dauphin-Villemant, C., Warren, J.T., Rees, H.H., 2017. Ecdysteroid Chemistry and Biochemistry ☆, in: Reference Module in Life Sciences. Elsevier, p. B9780128096338040267. https://doi.org/10.1016/B978-0-12-809633-8.04026-7

Lago, D.C., Nora, L.C., Hasselmann, M., Hartfelder, K., 2023. Positive selection in cytochrome P450 genes is associated with gonad phenotype and mating strategy in social bees. Sci Rep 13, 5921. https://doi.org/10.1038/s41598-023-32898-6

Lamb, D. C., Kim, Y., Yermalitskaya, L. V., Yermalitsky, V. N., Lepesheva, G. I., Kelly, S. L., Waterman, MR., Podust, L. M 2006. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. Structure 14, 51-61.

Lange, J.D., Bastide, H., Lack, J.B., Pool, J.E., 2022. A Population Genomic Assessment of Three Decades of Evolution in a Natural Drosophila Population. Molecular Biology and Evolution 39, msab368. https://doi.org/10.1093/molbev/msab368

Lao, S.-H., Huang, X.-H., Huang, H.-J., Liu, C.-W., Zhang, C.-X., Bao, Y.-Y., 2015. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens. Genomics 106, 301–309. https://doi.org/10.1016/j.ygeno.2015.07.010

Latli, B., and Prestwich, G. D. 1991. Metabolically blocked analogs of housefly sex pheromone: I. Synthesis of alternative substrates for the cuticular monooxygenases. J. Chem. Ecol. 17, 1745-1768

Le Goff, G., Hilliou, F., 2017. Resistance evolution in Drosophila : the case of CYP6G1: CYP6G1 in insecticide resistance. Pest. Manag. Sci. 73, 493–499. https://doi.org/10.1002/ps.4470

Le Goff, G., Boundy, S., Daborn, P.J., Yen, J.L., Sofer, L., Lind, R., Sabourault, C., Madi-Ravazzi, L. and ffrench-Constant, R.H. 2003. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem. Mol. Biol., 33, 701-708.

Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, ffrench-Constant RH, Feyereisen R. 2006. Xenobiotic response in Drosophila melanogaster: Sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36 : 674-682

Lee, S.-A., Kim, V., Choi, B., Lee, H., Chun, Y.-J., Cho, K.S., Kim, D., 2022. Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase. Biomol Ther (Seoul). https://doi.org/10.4062/biomolther.2022.084

Lee, S.S.T., Scott, J.G., 1992. Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in house fly, Musca domestica L. Insect Biochemistry and Molecular Biology 22, 699–711. https://doi.org/10.1016/0965-1748(92)90049-K

Lee, S., Kang, J., Min, J., Yoon, K., Strycharz, J., Johnson, R., Mittapalli, O., Margam, V., Sun, W., Li, H., Xie, J., Wu, J., Kirkness, E., Berenbaum, M., Pittendrigh, B., Clark, J., 2010. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism. Insect Mol Biol 19, 599-615.

Lefevere, K.S., Lacey, M.J., Smith, P.H., Roberts, B., 1993. Identification and quantification of juvenile hormone biosynthesized by larval and adult Australian sheep blowfly Lucilia cuprina (Diptera : Calliphoridae). Insect Biochemistry and Molecular Biology 23, 713–720. https://doi.org/10.1016/0965-1748(93)90045-T

Lei, L., Gao, Z., Zhao, Q., Wang, C., Wang, Y., Wang, H., Chi, X., Xu, B., 2024. Identification of the cytochrome P450 gene AccCYP6A13 in Apis cerana cerana and its response to environmental stress. Pesticide Biochemistry and Physiology 202, 105890. https://doi.org/10.1016/j.pestbp.2024.105890 [this is not CYP6A13 but CYP6AS3]

Lencioni, V., Grazioli, V., Rossaro, B., Bernabò, P., 2016. Transcriptional profiling induced by pesticides employed in organic agriculture in a wild population of Chironomus riparius under laboratory conditions. Science of The Total Environment 557–558, 183–191. https://doi.org/10.1016/j.scitotenv.2016.03.062

Lertkiatmongkol, P., Jenwitheesuk, E., Rongnoparut, P., 2011. Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into differences in substrate selectivity. BMC Res Notes 4, 321. https://doi.org/10.1186/1756-0500-4-321

Lewis, C.L., Fitzgibbon, Q.P., Smith, G.G., Elizur, A., Ventura, T., 2024. Ontogeny of the Cytochrome P450 Superfamily in the Ornate Spiny Lobster (Panulirus ornatus). IJMS 25, 1070. https://doi.org/10.3390/ijms25021070

Leys D, Mowat C, McLean K, Richmond A, Chapman S, Walkinshaw M, Munro A 2003. Atomic Structure of Mycobacterium tuberculosis CYP121 to 1.06 A Reveals Novel Features of Cytochrome P450. J. Biol. Chem. 278: 5141-5147

Li, A.Y., Davey, R.B., Miller, R.J., George, J.E., 2003. Resistance to Coumaphos and Diazinon in Boophilus microplus (Acari: Ixodidae) and Evidence for the Involvement of an Oxidative Detoxification Mechanism. J Med Entomol 40, 482–490. https://doi.org/10.1603/0022-2585-40.4.482

Li, B., 2005. Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori). Sci China Ser C 48, 414. https://doi.org/10.1360/04yc0057

Li, B., Wang, D., Xie, X., Chen, X., Liang, G., Xing, D., Zhao, T., Wu, J., Zhou, X., Li, C., 2024. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 16, 525. https://doi.org/10.3390/v16040525

Li, C., Zhao, X., Liu, W., Wen, L., Deng, Y., Shi, W., Zhou, N., Song, R., Hu, E., Guo, Q., Gailike, B., 2024. Biological Characteristics of the Cytochrome P 450 Family and the Mechanism of Terpinolene Metabolism in Hyalomma asiaticum (Acari: Ixodidae). IJMS 25, 11467. https://doi.org/10.3390/ijms252111467

Li, F., Ma, K., Chen, X., Zhou, J.-J., Gao, X., 2019a. The regulation of three new members of the cytochrome P450 CYP6 family and their promoters in the cotton aphid Aphis gossypii by plant allelochemicals: Regulation of three CYP6 genes. Pest. Manag. Sci 75, 152–159. https://doi.org/10.1002/ps.5081

Li, F., Ma, K., Liu, Y., Zhou, J.-J., Gao, X., 2019b. Characterization of the Cytochrome P450 Gene CYP305A1 of the Cotton Aphid (Hemiptera: Aphididae) and Its Responsive Cis-Elements to Plant Allelochemicals. Journal of Economic Entomology 112, 1365–1371. https://doi.org/10.1093/jee/toz021

Li, F., Ma, K.-S., Liang, P.-Z., Chen, X.-W., Liu, Y., Gao, X.-W., 2017. Transcriptional responses of detoxification genes to four plant allelochemicals in Aphis gossypii. Journal of Economic Entomology 110, 624–631. https://doi.org/10.1093/jee/tow322

Li, F., Ni, M., Zhang, H., Wang, B., Xu, K., Tian, J., Hu, J., Shen, W., Li, B., 2015. Expression profile analysis of silkworm P450 family genes after phoxim induction. Pesticide Biochemistry and Physiology 122, 103–109. https://doi.org/10.1016/j.pestbp.2014.12.013

Li, G., Niu, J.-Z., Zotti, M., Sun, Q.-Z., Zhu, L., Zhang, J., Liao, C.-Y., Dou, W., Wei, D.-D., Wang, J.-J., Smagghe, G., 2017. Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri). Insect Biochemistry and Molecular Biology 87, 136–146. https://doi.org/10.1016/j.ibmb.2017.06.009

Li, H., Liu, S., Chen, L., Luo, J., Zeng, D., Li, X., 2021. Juvenile hormone and transcriptional changes in honey bee worker larvae when exposed to sublethal concentrations of thiamethoxam. Ecotoxicology and Environmental Safety 225, 112744. https://doi.org/10.1016/j.ecoenv.2021.112744

Li, H., Xia, X., He, X., Li, S., Dai, L., Ye, J., Hao, D., 2022. Comparative Transcriptome Analysis Reveals Molecular Insights in Overwintering Monochamus alternatus (Coleoptera: Cerambycidae). Journal of Insect Science 22, 8. https://doi.org/10.1093/jisesa/ieac025

Li, H., Zhang, H., Guan, R., Miao, X., 2013. Identification of differential expression genes associated with host selection and adaptation between two sibling insect species by transcriptional profile analysis. BMC Genomics 14, 582. https://doi.org/10.1186/1471-2164-14-582

Li, H., Zhao, P., Li, S., Guo, J., Hao, D., 2024. Trial and error: New insights into recombinant expression of membrane-bound insect cytochromes P450 in Escherichia coli systems. International Journal of Biological Macromolecules 273, 133183. https://doi.org/10.1016/j.ijbiomac.2024.133183

Li J, Jin L, Lv Y, Ding Y, Yan K, Zhang H, Pan Y, Shang Q. 2023. Inducible Cytochrome P450s in the Fat Body and Malpighian Tubules of the Polyphagous Pests of Spodoptera litura Confer Xenobiotic Tolerance. J Agric Food Chem.71:14517-14526. https://doi.org/10.1021/acs.jafc.3c04865

Li, J., Jin, L., Yan, K., Xu, P., Pan, Y., Shang, Q., 2024. STAT5B, Akt and p38 Signaling Activate FTZ-F1 to Regulate the Xenobiotic Tolerance-Related Gene SlCyp9a75b in Spodoptera litura. J. Agric. Food Chem. acs.jafc.4c04465. https://doi.org/10.1021/acs.jafc.4c04465 [this is CYP9A158]

Li, J., Li, X., Bai, R., Shi, Y., Tang, Q., An, S., Song, Q., Yan, F., 2015. RNA interference of the P450 CYP6CM1 gene has different efficacy in B and Q biotypes of Bemisia tabaci Pest. Manag. Sci. 71, 1175–1181. https://doi.org/10.1002/ps.3903

Li, J., Mao, T., Wang, H., Lu, Z., Qu, J., Fang, Y., Chen, J., Li, M., Cheng, X., Hu, J., Gu, Z., Ni, M., Li, F., Li, B., 2019. The CncC/keap1 pathway is activated in high temperature-induced metamorphosis and mediates the expression of Cyp450 genes in silkworm, Bombyx mori. Biochemical and Biophysical Research Communications 514, 1045–1050. https://doi.org/10.1016/j.bbrc.2019.05.052

Li, J., Yan, K., Jin, L., Xu, P., Pan, Y., Shang, Q., 2024. A Malpighian Tubule-Specific P450 Gene SlCYP9A75a Contributes to Xenobiotic Tolerance in Spodoptera litura. J. Agric. Food Chem. 72, 15624–15632. https://doi.org/10.1021/acs.jafc.4c03069 [this is CYP9A157]

Li, L., Zuo, Y., Shi, Y., Yang, Y., Wu, Y., 2023. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. Insect Biochemistry and Molecular Biology 163, 104042. https://doi.org/10.1016/j.ibmb.2023.104042

Li, M., Feng, X., Reid, W.R., Tang, F., Liu, N., 2023. Multiple-P450 Gene Co-Up-Regulation in the Development of Permethrin Resistance in the House Fly, Musca domestica. IJMS 24, 3170. https://doi.org/10.3390/ijms24043170

Li, M., Reid, W.R., Zhang, L., Scott, J.G., Gao, X., Kristensen, M., Liu, N., 2013. A whole transcriptomal linkage analysis of gene co-regulation in insecticide resistant house flies, Musca domestica. BMC Genomics 14, 803. https://doi.org/10.1186/1471-2164-14-803

Li, P., 2022. Metabolic functional redundancy of the CYP9A subfamily members leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella Pest Manag Sci. 2023 Apr;79(4):1452-1466. https://doi.org/10.1002/ps.7317.

Li, Q., Sun, Z., Shi, Q., Wang, R., Xu, C., Wang, H., Song, Y., Zeng, R., 2019. RNA-Seq Analyses of Midgut and Fat Body Tissues Reveal the Molecular Mechanism Underlying Spodoptera litura Resistance to Tomatine. Front. Physiol. 10, 8. https://doi.org/10.3389/fphys.2019.00008

Li, S., Chen, S., Xie, X., Dong, S., Li, X., 2021. Identification of Wild-Type CYP321A2 and Comparison of Allelochemical-Induced Expression Profiles of CYP321A2 with Its Paralog CYP321A1 in Helicoverpa zea. Insects 2021, 12, 75. https://doi.org/ 10.3390/insects12010075

Li, S., Cheng, L., Yang, Q., Huang, Z., Shao, B., Yu, S., Ding, L., Pan, Q., Lei, S., Liu, L., Cong, L., Ran, C., 2024. Overexpression of a nuclear receptor HR96 contributes to spirodiclofen susceptibility in Panonychus citri (McGregor). Pesticide Biochemistry and Physiology 202, 105952. https://doi.org/10.1016/j.pestbp.2024.105952

Li, S., Li, H., Chen, C., Hao, D., 2023. Tolerance to dietary linalool primarily involves co-expression of cytochrome P450s and cuticular proteins in Pagiophloeus tsushimanus (Coleoptera: Curculionidae) larvae using SMRT sequencing and RNA-seq. BMC Genomics 24, 34. https://doi.org/10.1186/s12864-023-09117-7

Li, S, Li, Z., Zhang, G., Urlacher, V.B., Ma, L., Li, S, 2024. Functional analysis of the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439. Engineering Microbiology 4, 100166. https://doi.org/10.1016/j.engmic.2024.100166

Li, S., Wu, W.-Y., Liao, L.-H., Berenbaum, M.R., 2024. Transcriptional responses of detoxification genes to coumaphos in a nontarget species, Galleria mellonella (greater wax moth) (Lepidoptera: Pyralidae), in the beehive environment. Pesticide Biochemistry and Physiology 205, 106156. https://doi.org/10.1016/j.pestbp.2024.106156

Li, S., Yang, H., Wang, Y., Wei, L., Lyu, J., Shan, Z., Zhang, X., Fan, D., 2024. RNA Interference Reveals the Impacts of CYP6CY7 on Imidacloprid Resistance in Aphis glycines. Insects 15, 188. https://doi.org/10.3390/insects15030188

Li, T., Cao, C., Yang, T., Zhang, L., He, L., Xi, Z., Bian, G., Liu, N., 2015a. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 5, 17772. https://doi.org/10.1038/srep17772

Li, T., Liu, N., 2017. Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade. Biochemistry and Biophysics Reports 12, 12–19. https://doi.org/10.1016/j.bbrep.2017.08.010

Li, T., Liu, N., 2019. Role of the G-Protein-Coupled Receptor Signaling Pathway in Insecticide Resistance. IJMS 20, 4300. https://doi.org/10.3390/ijms20174300

Li, T., Liu, L., Zhang, L., Liu, N., 2015b. Role of G-protein-coupled Receptor-related Genes in Insecticide Resistance of the Mosquito, Culex quinquefasciatus. Sci Rep 4, 6474. https://doi.org/10.1038/srep06474

Li, T., Yuan, L., Jiang, D., Yan, S., 2024. HcCYP6AE178 plays a crucial role in facilitating Hyphantria cunea’s adaptation to a diverse range of host plants. Pesticide Biochemistry and Physiology 206, 106194. https://doi.org/10.1016/j.pestbp.2024.106194

Li, W., Berenbaum, M.R. and Schuler, M.A. 2001. Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochem. Mol. Biol., 31, 999-1011

Li, W., Petersen, R.A., Schuler, M.A. and Berenbaum, M.R. 2002. CYP6B cytochrome P450 monooxygenases from Papilio canadensis and Papilio glaucus: potential contributions of sequence divergence to host plant associations. Insect Mol. Biol., 11, 543-51.

Li W, Schuler MA, Berenbaum MR 2003. Diversification of furanocoumarin metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate. Proc Natl Acad Sci USA, 100 Suppl 2:14593–14598

Li, W., Yang, W., Shi, Y., Yang, X., Liu, S., Liao, X., Shi, L., 2024. Comprehensive analysis of the overexpressed cytochrome P450-based insecticide resistance mechanism in Spodoptera litura. Journal of Hazardous Materials 461, 132605. https://doi.org/10.1016/j.jhazmat.2023.132605

Li, W., Zangerl, A., Schuler, M., Berenbaum, M., 2004. Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Mol Biol 13, 603-613.

Li, W.-T., Lin, J.-Y., Liu, J.-J., Hafeez, M., Deng, S.-W., Chen, H.-Y., Ren, R.-J., Rana, M.S., Wang, R.-L., 2024. Molecular insights into the functional analysis of P450 CYP321A7 gene in the involvement of detoxification of lambda-cyhalothrin in Spodoptera frugiperda. Pesticide Biochemistry and Physiology 203, 106009. https://doi.org/10.1016/j.pestbp.2024.106009

Li, X., Bai, S., Cass, B.N., 2012. Accord insertion in the 5′ flanking region of CYP6G1 confers nicotine resistance in Drosophila melanogaster. Gene 502, 1–8. https://doi.org/10.1016/j.gene.2012.04.031

Li X, Baudry J, Berenbaum MR, Schuler MA 2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proceedings of the National Academy of Sciences 101:2939–2944.

Li, X., Berenbaum, M.R. and Schuler, M.A. 2000. Molecular cloning and expression of CYP6B8: a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem. Mol. Biol., 30, 75-84

Li, X., Berenbaum, M.R. and Schuler, M.A. 2002. Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol. Biol., 11, 343-51

Li, X., Berenbaum, M.R. and Schuler, M.A. 2000. Cytochrome P450 and actin genes expressed in Helicoverpa zea and Helicoverpa armigera: paralogy/orthology identification, gene conversion and evolution. Insect Biochem. Mol. Biol., 32, 311-20.

Li, X., Deng, Z., Chen, X., 2021. Regulation of insect P450s in response to phytochemicals. Current Opinion in Insect Science 43, 108–116. https://doi.org/10.1016/j.cois.2020.12.003

Li, X., Hu, S., Zhang, H., Yin, H., Wang, H., Zhou, D., Sun, Y., Ma, L., Shen, B., Zhu, C., 2021. MiR-279-3p regulates deltamethrin resistance through CYP325BB1 in Culex pipiens pallens. Parasites Vectors 14, 528. https://doi.org/10.1186/s13071-021-05033-5

Li, X., Li, R., Zhu, B., Gao, X., Liang, P., 2018. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.) Pest. Manag. Sci 74, 1386–1393. https://doi.org/10.1002/ps.4816

Li, X., Lin, L., Li, Z., Hadiatullah, H., Sharma, S., Du, H., Yang, X., Chen, W., You, S., Bureik, M., Yuchi, Z., 2023. Development of an efficient insecticide substrate and inhibitor screening system of insect P450s using fission yeast. Insect Biochemistry and Molecular Biology 157, 103958. https://doi.org/10.1016/j.ibmb.2023.103958

Li, X., Schuler, MA, Berenbaum, MR. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52, 231-53.

Li, X., Schuler, M.A. and Berenbaum, M.R. 2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature, 419, 712-5

Li, X., Shan, C., Li, F., Liang, P., Smagghe, G., Gao, X., 2019. Transcription factor FTZ-F1 and cis -acting elements mediate expression of CYP6BG1 conferring resistance to chlorantraniliprole in Plutella xylostella: FTZ-F1 and cis -acting elements mediate expression of CYP6BG1 in Plutella xylostella. Pest. Manag. Sci. 75, 1172–1180. https://doi.org/10.1002/ps.5279

Li, X., Ma, L., Yang, W., Xu, K., 2024. Knockdown of CYP6SZ3 and CYP6AEL1 genes increases the susceptibility of Lasioderma serricorne to ethyl formate and benzothiazole. Front. Physiol. 15, 1503953. https://doi.org/10.3389/fphys.2024.1503953

Li, X., Zangerl, A.R., Schuler, M.A., Berenbaum, M.R., 2000. Cross-Resistance to alpha-Cypermethrin After Xanthotoxin Ingestion in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 93, 8.

Li, Y.-Q., Huang, A., Li, X.-J., Edwards, M.G., Gatehouse, A.M.R., 2024. RNAi targeting Na and CPR via leaf delivery reduces adult emergence and increases the susceptibility to λ-cyholthin [sic; presumably cyhalothrin] in Tuta absoluta (Meyrick). Pesticide Biochemistry and Physiology 204, 106089. https://doi.org/10.1016/j.pestbp.2024.106089

Li, Z., Ge, X., Ling, L., Zeng, B., Xu, J., Aslam, A.F.M., You, L., Palli, S.R., Huang, Y., Tan, A., 2014. CYP18A1 regulates tissue-specific steroid hormone inactivation in Bombyx mori. Insect Biochemistry and Molecular Biology 54, 33–41. https://doi.org/10.1016/j.ibmb.2014.08.007

Li, Z.-Q., Ma, L., Yin, Q., Cai, X.-M., Luo, Z.-X., Bian, L., Xin, Z.-J., He, P., Chen, Z.-M., 2018. Gene Identification of Pheromone Gland Genes Involved in Type II Sex Pheromone Biosynthesis and Transportation in Female Tea Pest Ectropis grisescens. G3 8, 899–908. https://doi.org/10.1534/g3.117.300543

Lian, L.-Y., Widdowson, P., McLaughlin, L.A., Paine, M.J.I., 2011. Biochemical Comparison of Anopheles gambiae and Human NADPH P450 Reductases Reveals Different 2′-5′-ADP and FMN Binding Traits. PLoS ONE 6, e20574. https://doi.org/10.1371/journal.pone.0020574

Liang, J., Yang, J., Hu, J., Fu, B., Gong, P., Du, T., Xue, H., Wei, X., Liu, S., Huang, M., Yin, C., Ji, Y., He, C., Xie, W., Wang, R., Yang, X., Zhang, Y., 2022. Cytochrome P450 CYP4G68 Is Associated with Imidacloprid and Thiamethoxam Resistance in Field Whitefly, Bemisia tabaci (Hemiptera: Gennadius). Agriculture 12, 473. https://doi.org/10.3390/agriculture12040473

Liang, L., Li, J., Jin, L., Yan, K., Pan, Y., Shang, Q., 2024. Identification of inducible CYP3 and CYP4 genes associated with abamectin tolerance in the fat body and Malpighian tubules of Spodoptera litura. Pesticide Biochemistry and Physiology 198, 105751. https://doi.org/10.1016/j.pestbp.2023.105751

Liang, X., Xiao, D., He, Y., Yao, J., Zhu, G., Zhu, K., 2015. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum). IJMS 16, 2078–2098. https://doi.org/10.3390/ijms16012078

Liang, Z., Pang, R., Dong, Y., Sun, Z., Ling, Y., Zhang, W., 2018. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper. Insect Science 25, 726–738. https://doi.org/10.1111/1744-7917.12472

Liebrich, W. and Hoffmann, K.H. 1991. Ecdysone 20-monooxygenase in a cricket, Gryllus bimaculatus (Ensifera, Gryllidae): characterization of the microsomal midgut steroid hydroxylase in adult females. J. Comp. Physiol. B, 161, 93-99.

Liebrich, W., Durnberger, B.B., Hoffmann, K.H., 1991. Ecdysone 20-monooxygenase in a cricket (Gryllus bimaculatus Ensifera, Gryllidae)-activity throughout adult life cycle. Comp. Biochem. Physiol. 99A, 597-602.

Lin, D., Fang, Y., Li, L., Zhang, L., Gao, S., Wang, R., Wang, J., 2022. The insecticidal effect of the botanical insecticide chlorogenic acid on Mythimna separata (Walker) is related to changes in MsCYP450 gene expression. Front. Plant Sci. 13, 1015095. https://doi.org/10.3389/fpls.2022.1015095

Lin, G.G.-H., Kozaki, T., Scott, J.G., 2011. Hormone receptor-like in 96 and Broad-Complex modulate phenobarbital induced transcription of cytochrome P450 CYP6D1 in Drosophila S2 cells: Phenobarbital induced transcription. Insect Molecular Biology 20, 87–95. https://doi.org/10.1111/j.1365-2583.2010.01047.x

Lin, G.G.-H., Scott, J.G., 2011. Investigations of the constitutive overexpression of CYP6D1 in the permethrin resistant LPR strain of house fly (Musca domestica). Pesticide Biochemistry and Physiology 100, 130–134. https://doi.org/10.1016/j.pestbp.2011.02.012

Lin, J.-G., Hung, C.-F., Sun, C.-N., 1989. Teflubenzuron resistance and microsomal monooxygenases in larvae of the diamondback moth. Pesticide Biochemistry and Physiology 35, 20–25. https://doi.org/10.1016/0048-3575(89)90098-9

Lin, R., Yang, M., Yao, B., 2022. The phylogenetic and evolutionary analyses of detoxification gene families in Aphidinae species. PLoS ONE 17, e0263462. https://doi.org/10.1371/journal.pone.0263462

Lindigkeit, R., Biller, A., Buch, M., Schiebel, H., Boppré, M., Hartmann, T., 1997. The two Faces of Pyrrolizidine Alkaloids: the Role of the Tertiary Amine and its N ‐Oxide in Chemical Defense of Insects with Acquired Plant Alkaloids. European Journal of Biochemistry 245, 626–636. https://doi.org/10.1111/j.1432-1033.1997.00626.x

Lindroth, R.L. 1989. Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomol. exp. appl., 50, 29-35.

Lindroth, R.L. 1991. Differential Toxicity of Plant Allelochemicals to Insects: Roles of Enzymatic Detoxication Systems. In: Insect-Plant Interactions, Vol. III (ed. E.A. Bernays), p. 1-33. CRC Press.

Ling, R., Yang, R., Li, P., Zhang, X., Shen, T., Li, X., Yang, Q., Sun, L., Yan, J., 2019. Asatone and Isoasatone A Against Spodoptera litura Fab. by Acting on Cytochrome P450 Monoxygenases and Glutathione Transferases. Molecules 24, 3940. https://doi.org/10.3390/molecules24213940

Liu, B., Chen, H., 2022. Disruption of CYP6DF1 and CYP6DJ2 increases the susceptibility of Dendroctonus armandi to (+)-α-pinene. Pesticide Biochemistry and Physiology 188, 105270. https://doi.org/10.1016/j.pestbp.2022.105270

Liu, B., Fu, D., Ning, H., Tang, M., Chen, H., 2022a. Knockdown of CYP6CR2 and CYP6DE5 reduces tolerance to host plant allelochemicals in the Chinese white pine beetle Dendroctonus armandi. Pesticide Biochemistry and Physiology 187, 105180. https://doi.org/10.1016/j.pestbp.2022.105180

Liu, B., Jiang, G., Zhang, Y., Li, J., Li, X., Yue, J., Chen, F., Liu, H., Li, H., Zhu, S., Wang, J., Ran, C., 2011. Analysis of Transcriptome Differences between Resistant and Susceptible Strains of the Citrus Red Mite Panonychus citri (Acari: Tetranychidae). PLoS ONE 6, e28516. https://doi.org/10.1371/journal.pone.0028516

Liu, B., Tang, M., Chen, H., 2022b. Activation of the ROS/CncC Signaling Pathway Regulates Cytochrome P450 CYP4BQ1 Responsible for (+)-α-Pinene Tolerance in Dendroctonus armandi. IJMS 23, 11578. https://doi.org/10.3390/ijms231911578

Liu, D., Tian, K., Yuan, Y., Li, M., Zheng, M., Qiu, X., 2018. Prokaryotic functional expression and activity comparison of three CYP9A genes from the polyphagous pest Helicoverpa armigera. Bull. Entomol. Res. 108, 77–83. https://doi.org/10.1017/S0007485317000517

Liu, D., Yuan, Y., Li, M., Qiu, X., 2015. Effects of dietary quercetin on performance and cytochrome P450 expression of the cotton bollworm, Helicoverpa armigera. Bull. Entomol. Res. 105, 771–777. https://doi.org/10.1017/S0007485315000760

Liu, D., Zhou, X., Li, M., Zhu, S., Qiu, X., 2014. Characterization of NADPH–cytochrome P450 reductase gene from the cotton bollworm, Helicoverpa armigera. Gene 545, 262–270. https://doi.org/10.1016/j.gene.2014.04.054

Liu, J., Hua, J., Wang, Y., Guo, X., Luo, S., 2023. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. J. Agric. Food Chem. 71, 10670–10682. https://doi.org/10.1021/acs.jafc.3c02779

Liu, J., Wu, H., Zhang, X., Ma, W., Zhu, W., Silver, K., Ma, E., Zhang, J., Zhu, K.Y., 2019. Metabolism of selected model substrates and insecticides by recombinant CYP6FD encoded by its gene predominately expressed in the brain of Locusta migratoria. Pesticide Biochemistry and Physiology 159, 154–162. https://doi.org/10.1016/j.pestbp.2019.06.011

Liu, Jiao, Wu, H., Zhang, Y., Zhang, J., Ma, E., Zhang, X., 2023. Transcription factors, cap ‘n’ collar isoform C regulates the expression of CYP450 genes involving in insecticides susceptibility in Locusta migratoria. Pesticide Biochemistry and Physiology 196, 105627. https://doi.org/10.1016/j.pestbp.2023.105627

Liu, J., Zhang, X., Wu, H., Gao, Y., Silver, K., Ma, E., Zhang, J., Zhu, K.Y., 2018. Comparisons of microsomal cytochrome P450 content and enzymatic activity towards selected model substrates and insecticides in different tissues from the migratory locust (Locusta migratoria). Chemosphere 208, 366–373. https://doi.org/10.1016/j.chemosphere.2018.05.179

Liu, J., Zhang, X., Wu, H., Ma, W., Zhu, W., Zhu, K.-Y., Ma, E., Zhang, J., 2020. Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria. Journal of Integrative Agriculture 19, 1512–1521. https://doi.org/10.1016/S2095-3119(19)62827-3

Liu, K., Su, Q., Kang, K., Chen, M., Wang, W.-X., Zhang, W.-Q., Pang, R., 2021. Genome-wide Analysis of Alternative Gene Splicing Associated with Virulence in the Brown Planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Economic Entomology toab186. https://doi.org/10.1093/jee/toab186

Liu, M., Xiao, F., Zhu, J., Fu, D., Wang, Z., Xiao, R., 2023. Combined PacBio Iso-Seq and Illumina RNA-Seq Analysis of the Tuta absoluta (Meyrick) Transcriptome and Cytochrome P450 Genes. Insects 14, 363. https://doi.org/10.3390/insects14040363

Liu, N. and Scott, J.G. 1995. Genetics of resistance to pyrethroid insecticides in the house fly, Musca domestica. Pestic. Biochem. Physiol., 52, 116-124.

Liu, N. and Scott, J.G. 1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem Genet, 34, 133-48.

Liu, N. and Scott, J.G.1997a. Inheritance of CYP6D1-mediated pyrethroid resistance in house fly (Diptera: Muscidae). J. Econ. Entomol., 90, 1478-81.

Liu, N. and Scott, J.G. 1997b. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Mol. Biol., 6, 77-81.

Liu, N. and Scott, J.G. 1998. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem. Mol. Biol., 28, 531-5.

Liu, N., Scott, J.G., 1997. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in houseflies, Musca domestica. Insect Molecular Biology.

Liu, N. and Yue, X. 2001. Genetics of pyrethroid resistance in a strain (ALHF) of house flies (Diptera: Muscidae). Pestic. Biochem. Physiol., 70, 151-158.

Liu, N., Liu, H., Zhu, F., Zhang, L., 2007. Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.). Gene 394, 61-68.

Liu, N., Tomita, T., Scott, J., 1995. Allele-specific PCR reveals that CYP6D1 is on chromosome 1 in the house fly, Musca domestica. Experientia 51, 164-167.

Liu, N., Zhang, L., 2002. Identification of two new cytochrome P450 genes and their 5'-flanking regions from the housefly, Musca domestica. Insect Biochem Mol Biol 32, 755-764.

Liu, N., Zhang, L., 2004. CYP4AB1, CYP4AB2, and Gp-9 gene overexpression associated with workers of the red imported fire ant, Solenopsis invicta Buren. Gene 327, 81-87.

Liu, N., Li, M., Gong, Y., Liu, F., Li, T., 2015. Cytochrome P450s – Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology 120, 77–81. https://doi.org/10.1016/j.pestbp.2015.01.006

Liu, N., Li, T., Reid, W.R., Yang, T., Zhang, L., 2011. Multiple Cytochrome P450 Genes: Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus. PLoS ONE 6, e23403. https://doi.org/10.1371/journal.pone.0023403

Liu, N., Tomita, T. and Scott, J.G. 1995. Allele-specific PCR reveals that CYP6D1 is on chromosome 1 in the house fly, Musca domestica. Experientia, 51, 164-7.

Liu, S., Fu, B., Zhang, C., He, C., Gong, P., Huang, M., Du, T., Liang, J., Wei, X., Yang, J., Yin, C., Ji, Y., Xue, H., Hu, J., Wang, C., Zhang, R., Du, H., Yang, X., Zhang, Y., 2023. 20E biosynthesis gene CYP306A1 confers resistance to imidacloprid in the nymph stage of Bemisia tabaci by detoxification metabolism. Pest Management Science 79, 3883–3892. https://doi.org/10.1002/ps.7569

Liu, S., He, C., Liang, J., Su, Q., Hua, D., Wang, S., Wu, Q., Xie, W., Zhang, Y., 2020. Molecular characterization and functional analysis of the Halloween genes and CYP18A1 in Bemisia tabaci MED. Pesticide Biochemistry and Physiology 167, 104602. https://doi.org/10.1016/j.pestbp.2020.104602

Liu, S., Liang, Q.-M., Huang, Y.-J., Yuan, X., Zhou, W.-W., Qiao, F., Cheng, J., Gurr, G.M., Zhu, Z.-R., 2013. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 166, 225–231. https://doi.org/10.1016/j.cbpb.2013.09.004

Liu, S., Liang, Q.-M., Zhou, W.-W., Jiang, Y.-D., Zhu, Q.-Z., Yu, H., Zhang, C.-X., Gurr, G.M., Zhu, Z.-R., 2015. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides. Pest. Manag. Sci. 71, 32–39. https://doi.org/10.1002/ps.3760

Liu, S., Zhang, Y.-X., Wang, W.-L., Cao, Y., Li, S., Zhang, B.-X., Li, S.-G., 2018. Identification of putative cytochrome P450 monooxygenase genes from the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), and their response to insecticides. Arch. Insect Biochem. Physiol. 98, e21455. https://doi.org/10.1002/arch.21455

Liu, X., Zhang, L., Zhang, X., Xiwu, G., 2013. Molecular cloning and recombinant expression of cytochrome P450 CYP6B6 from Helicoverpa armigera in Escherichia coli. Mol Biol Rep 40, 1211–1217. https://doi.org/10.1007/s11033-012-2163-1

Liu, Y., Ge, M., Zhang, T., Chen, L., Xing, Y., Liu, L., Li, F., Cheng, L., 2020. Exploring the correlation between deltamethrin stress and Keap1-Nrf2-ARE pathway from Drosophila melanogaster RNASeq data. Genomics 112, 1300–1308. https://doi.org/10.1016/j.ygeno.2019.07.019

Liu Y, Yu J, Zhu F, Shen Z, Jiang H, Li Z, Liu X, Xu H. 2023. Function of Cytochrome P450s and Gut Microbiome in Biopesticide Adaptation of Grapholita molesta on Different Host Diets. Int J Mol Sci. 24:15435. https://doi.org/10.3390/ijms242015435

Lomas LO, Turner PC, Rees HH. 1997. A novel neuropeptide-endocrine interaction controlling ecdysteroid production in ixodid ticks. Proc Biol Sci 264: 589-596

Londoño, D.K., Siqueira, H.A.A., Wang, H., Sarath, G., Lydy, M.J., Siegfried, B.D., 2007. Cloning and expression of an atrazine inducible cytochrome P450, CYP4G33, from Chironomus tentans (Diptera: Chironomidae). Pesticide Biochemistry and Physiology 89, 104–110. https://doi.org/10.1016/j.pestbp.2007.04.001

Londono, D., Siegfried, B., Lydy, M., 2004. Atrazine induction of a family 4 cytochrome P450 gene in Chironomus tentans (Diptera: Chironomidae). Chemosphere 56, 701-706.

López-Osorio, F., Wurm, Y., 2020. Healthy Pollinators: Evaluating Pesticides with Molecular Medicine Approaches. Trends in Ecology & Evolution 35, 380–383. https://doi.org/10.1016/j.tree.2019.12.012

Louërat-Oriou B, Perret A, Pompon D. 1998. Differential redox and electron-transfer properties of purified yeast, plant and human NADPH-cytochrome P-450 reductases highly modulate cytochrome P-450 activities. Eur J Biochem. 258:1040-9. https://doi.org/10.1046/j.1432-1327.1998.2581040.x

Lozano-Fernandez J, Giacomelli M, Fleming JF, Chen A, Vinther J, Thomsen PF, Glenner H, Palero F, Legg DA, Iliffe TM, Pisani D, Olesen J. 2019. Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling. Genome Biol Evol. 11:2055-2070. https://doi.org/10.1093/gbe/evz097.

Lu, J., Zhang, H., Wang, Q., Huang, X., 2023. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. Insects 14, 212. https://doi.org/10.3390/insects14020212

Lu, K., Cheng, Y., Li, W., Li, Y., Zeng, R., Song, Y., 2020. Activation of CncC pathway by ROS burst regulates cytochrome P450 CYP6AB12 responsible for λ-cyhalothrin tolerance in Spodoptera litura. Journal of Hazardous Materials 387, 121698. https://doi.org/10.1016/j.jhazmat.2019.121698

Lu, K., Cheng, Y., Li, W., Ni, H., Chen, X., Li, Yue, Tang, B., Li, Yimin, Chen, D., Zeng, R., Song, Y., 2019. Copper-induced H2O2 accumulation confers larval tolerance to xanthotoxin by modulating CYP6B50 expression in Spodoptera litura. Pesticide Biochemistry and Physiology 159, 118–126. https://doi.org/10.1016/j.pestbp.2019.06.004

Lu, K., Cheng, Y., Li, Y., Li, W., Zeng, R., Song, Y., 2021. Phytochemical Flavone Confers Broad-Spectrum Tolerance to Insecticides in Spodoptera litura by Activating ROS/CncC-Mediated Xenobiotic Detoxification Pathways. J. Agric. Food Chem. 69, 7429–7445. https://doi.org/10.1021/acs.jafc.1c02695

Lu, K., Li, W., Cheng, Y., Ni, H., Chen, X., Li, Yue, Tang, B., Sun, X., Li, Yimin, Liu, T., Qin, N., Chen, D., Zeng, R., Song, Y., 2019. Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin. Pesticide Biochemistry and Physiology 160, 127–135. https://doi.org/10.1016/j.pestbp.2019.07.010

Lu, K., Li, Y., Cheng, Y., Li, W., Zeng, B., Gu, C., Zeng, R., Song, Y., 2021. Activation of the ROS/CncC and 20-Hydroxyecdysone Signaling Pathways Is Associated with Xanthotoxin-Induced Tolerance to λ-Cyhalothrin in Spodoptera litura. J. Agric. Food Chem. 69, 13425–13435. https://doi.org/10.1021/acs.jafc.1c04519

Lu, K., Li, Y., Cheng, Y., Li, W., Song, Y., Zeng, R., Sun, Z., 2021a. Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in Nilaparvata lugens. Pesticide Biochemistry and Physiology 173, 104800. https://doi.org/10.1016/j.pestbp.2021.104800

Lu, K., Song, Y., Zeng, R., 2021b. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science 43, 103–107. https://doi.org/10.1016/j.cois.2020.11.004

Lu, K.H., Bradfield, J.Y., Keeley, L.L., 1995. Hypertrehalosemic hormone-regulated gene expression for cytochrome P4504C1 in the fat body of the Cockroach, Blaberus discoidalis. Arch Insect Biochem Physiol 28, 79-90.

Lu, K.H., Bradfield, J.Y., Keeley, L.L., 1999. Juvenile hormone inhibition of gene expression for cytochrome P4504C1 in adult females of the cockroach, Blaberus discoidalis. Insect Biochem Mol Biol 29, 667-673.

Lu, Y., Bai, Q., Li, Q., Zheng, X., Tian, J., Guo, J., Xu, H., Lu, Z., 2022. Two P450 genes, CYP6SN3 and CYP306A1, involved in the growth and development of Chilo suppressalis and the lethal effect caused by vetiver grass. International Journal of Biological Macromolecules 223, 860–869. https://doi.org/10.1016/j.ijbiomac.2022.11.087

Lu, Z., Lu, K., Li, Y., Xiao, T., Zhou, Z., Chen, Y., Liu, J., Sun, Z., Gui, F., 2024. Screening and functional validation of the core detoxification genes conferring broad‐spectrum response to insecticides in Spodoptera frugiperda. Pest Management Science 80, 3491–3503. https://doi.org/10.1002/ps.8054

Luan, J.-B., Ghanim, M., Liu, S.-S., Czosnek, H., 2013. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochemistry and Molecular Biology 43, 740–746. https://doi.org/10.1016/j.ibmb.2013.05.012

Lucas, E.R., Miles, A., Harding, N.J., Clarkson, C.S., Lawniczak, M.K.N., Kwiatkowski, D.P., Weetman, D., Donnelly, M.J., The Anopheles gambiae 1000 Genomes Consortium, 2019. Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Res. 29, 1250–1261. https://doi.org/10.1101/gr.245795.118

Lucas, E.R., Nagi, S.C., Kabula, B., Batengana, B., Kisinza, W., Egyir-Yawson, A., Essandoh, J., Dadzie, S., Chabi, J., Van’t Hof, A.E., Rippon, E.J., Pipini, D., Harding, N.J., Dyer, N.A., Clarkson, C.S., Miles, A., Weetman, D., Donnelly, M.J., 2024. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania. (preprint). Genomics. https://doi.org/10.1101/2024.03.11.583874

Luong, H.N.B., Kalogeridi, M., Vontas, J., Denecke, S., 2022. Using tissue specific P450 expression in Drosophila melanogaster larvae to understand the spatial distribution of pesticide metabolism in feeding assays. Insect Molecular Biology 31, 369–376. https://doi.org/10.1111/imb.12765

Lv, S., Guan, D., Wei, J., Ge, H., Zhou, X., Zheng, Y., Qian, K., Wang, J., 2024. Low concentrations of cyantraniliprole negatively affects the development of Spodoptera frugiperda by disruption of ecdysteroid biosynthesis and carbohydrate and lipid metabolism. Pesticide Biochemistry and Physiology 200, 105827. https://doi.org/10.1016/j.pestbp.2024.105827

Lv, Y., Wang, W., Hong, S., Lei, Z., Fang, F., Guo, Q., Hu, S., Tian, M., Liu, B., Zhang, D., Sun, Y., Ma, L., Shen, B., Zhou, D., Zhu, C., 2016. Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-seq. Mol Genet Genomics 291, 309–321. https://doi.org/10.1007/s00438-015-1109-4

Lv, Y., Wen, S., Ding, Y., Gao, X., Chen, X., Yan, K., Yang, F., Pan, Y., Shang, Q., 2022. Functional Validation of the Roles of Cytochrome P450s in Tolerance to Thiamethoxam and Imidacloprid in a Field Population of Aphis gossypii. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.2c04867

Lycett GJ, McLaughlin LA, Ranson H, Hemingway J, Kafatos FC, et al. 2006 Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Molecular Biology. 15: 321-327.

Ma, K., Li, F., Tang, Q., Liang, P., Liu, Y., Zhang, B., Gao, X., 2019. CYP4CJ1-mediated gossypol and tannic acid tolerance in Aphis gossypii Glover. Chemosphere 219, 961–970. https://doi.org/10.1016/j.chemosphere.2018.12.025

Ma, K., Tang, Q., Zhang, B., Liang, P., Wang, B., Gao, X., 2019. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology 157, 204–210. https://doi.org/10.1016/j.pestbp.2019.03.021

Ma, L., Tang, J., Zhang, Q., Gao, B., Qu, C., Wang, R., Luo, C., 2024. Involvement of the cytochrome P450 genes CYP6DW3 and CYP4C64 in afidopyropen resistance in Bemisia tabaci Mediterranean (Q Biotype). Journal of Integrative Agriculture S2095311924002703. https://doi.org/10.1016/j.jia.2024.07.027

Ma, R., Cohen, M.B., Berenbaum, M.R. and Schuler, M.A. 1994. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch Biochem Biophys, 310, 332-40 https://doi.org/10.1006/abbi.1994.1175

Ma, Z., Zhang, Y., You, C., Zeng, X., Gao, X., 2020. The role of G protein‐coupled receptor‐related genes in cytochrome P450‐mediated resistance of the house fly, Musca domestica (Diptera: Muscidae), to imidacloprid. Insect Mol Biol 29, 92–103. https://doi.org/10.1111/imb.12615

Macdonald, S.J., Long, A.D., 2022. Discovery of malathion resistance QTL in Drosophila melanogaster using a bulked phenotyping approach. G3 10.

MacLean, M., Nadeau, J., Gurnea, T., Tittiger, C., Blomquist, G.J., 2018. Mountain pine beetle (Dendroctonus ponderosae) CYP4Gs convert long and short chain alcohols and aldehydes to hydrocarbons. Insect Biochemistry and Molecular Biology 102, 11–20. https://doi.org/10.1016/j.ibmb.2018.09.005

Maeda, S., Nakashima, A., Yamada, R., Hara, N., Fujimoto, Y., Ito, Y., Sonobe, H., 2008. Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 149, 507-516.

Mahamat, G., Kengne-Ouafo, J.A., Tchouakui, M., Wondji, M.J., Mugenzi, L., Hearn, J., Onana, B., Wondji, C.S., 2024. Genome-wide association studies unveil major genetic loci driving insecticide resistance in Anopheles funestus in four eco-geographical settings across Cameroon. https://doi.org/10.1101/2024.06.17.599266

Mahapatra, C.T., Bond, J., Rand, D.M., Rand, M.D., 2010. Identification of Methylmercury Tolerance Gene Candidates in Drosophila Toxicol Sci. 116:225-38. https://doi.org/10.1093/toxsci/kfq097

Mahmood, K., Højland, D.H., Asp, T., Kristensen, M., 2016. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes. PLoS ONE 11, e0151434. https://doi.org/10.1371/journal.pone.0151434

Maibeche-Coisne, M., Jacquin-Joly, E., Francois, M.C. and Nagnan-Le Meillour, P. 2002. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol. Biol., 11, 273-81

Maibeche-Coisne M, Monti-Dedieu L, Aragon S, Dauphin-Villemant C 2000 A new cytochrome P450 from Drosophila melanogaster, CYP4G15, expressed in the nervous system. Biochem Biophys Res Commun. 273: 1132-1137.

Maïbèche-Coisne, M, Merlin, C., François, MC., Porcheron, P., Jacquin-Joly, E., 2005. P450 and P450 reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in male antennae. Gene 346, 195–203.

Maibeche-Coisne, M., Nikonov, A., Ishida, Y., Jacquin-Joly, E., Leal, W., 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci U S A 101, 11459-11464.

Main, B.J., Lee, Y., Collier, T.C., Norris, L.C., Brisco, K., Fofana, A., Cornel, A.J., Lanzaro, G.C., 2015. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali. Mol Ecol 24, 5145–5157. https://doi.org/10.1111/mec.13382

Maitra, S., Dombrowski, S.M., Waters, L.C., Ganguly, R., 1996. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene 180, 165–171. https://doi.org/10.1016/S0378-1119(96)00446-5

Maitra, S., Dombrowski, S.M., Basu, M., Raustol, O., Waters, L.C. and Ganguly, R. 2000. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene, 248, 147-56.

Maitra, S., Price, C. and Ganguly, R. 2002. Cyp6a8 of Drosophila melanogaster: gene structure, and sequence and functional analysis of the upstream DNA. Insect Biochem. Mol. Biol., 32, 859-70.

Maiwald, F., Haas, J., Hertlein, G., Lueke, B., Roesner, J., Nauen, R., 2023. Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages. Pesticide Biochemistry and Physiology 192, 105410. https://doi.org/10.1016/j.pestbp.2023.105410

Malka, O., Feldmesser, E., Brunschot, S., Santos‐Garcia, D., Han, W., Seal, S., Colvin, J., Morin, S., 2021. The molecular mechanisms that determine different degrees of polyphagy in the Bemisia tabaci species complex. Evol Appl 14, 807–820. https://doi.org/10.1111/eva.13162

Malka, O., Karunker, I., Yeheskel, A., Morin, S., Hefetz, A., 2009. The gene road to royalty - differential expression of hydroxylating genes in the mandibular glands of the honeybee. Febs J 276, 5481-5490.

Malka, O., Santos-Garcia, D., Feldmesser, E., Sharon, E., Krause-Sakate, R., Delatte, H., van Brunschot, S., Patel, M., Visendi, P., Mugerwa, H., Seal, S., Colvin, J., Morin, S., 2018. Species-complex diversification and host-plant associations in Bemisia tabaci : A plant-defence, detoxification perspective revealed by RNA-Seq analyses. Mol Ecol 27, 4241–4256. https://doi.org/10.1111/mec.14865

Mallott, M., Hamm, S., Troczka, B.J., Randall, E., Pym, A., Grant, C., Baxter, S., Vogel, H., Shelton, A.M., Field, L.M., Williamson, M.S., Paine, M., Zimmer, C.T., Slater, R., Elias, J., Bass, C., 2019. A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology 115, 103247. https://doi.org/10.1016/j.ibmb.2019.103247

Manjon, C., Troczka, B.J., Zaworra, M., Beadle, K., Randall, E., Hertlein, G., Singh, K.S., Zimmer, C.T., Homem, R.A., Lueke, B., Reid, R., Kor, L., Kohler, M., Benting, J., Williamson, M.S., Davies, T.G.E., Field, L.M., Bass, C., Nauen, R., 2018. Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides. Current Biology 28, 1137-1143.e5. https://doi.org/10.1016/j.cub.2018.02.045

Mansuy, D. 1998. The great diversity of reactions catalyzed by cytochrome P450. Comp Biochem Physiol 121C, 5-14.

Mansuy, D., Renaud, J. P. 1995. Heme-thiolate proteins different from cytochromes P450 catalyzing monooxygenations. In Cytochrome P450, second ed. Ortiz de Montellano, P. R., ed, pp. 537-574. Plenum Press, New York and London.

Mao, B., Zheng, Y., Xiao, Y., Yang, K., Shangguan, J., Shen, M., Sun, H., Fang, X., Fu, Y., 2024. Genome-wide phylogenetic analysis and expansion of gene families involved in detoxification in Smittia aterrima (Meigen)and Smittia pratorum (Goetghebuer) (Diptera, Chironomidae). BMC Genom Data 25, 106. https://doi.org/10.1186/s12863-024-01289-9

Mao, W., Berenbaum, M.R., Schuler, M.A., 2008. Modifications in the N-terminus of an insect cytochrome P450 enhance production of catalytically active protein in baculovirus-Sf9 cell expression systems. Insect Biochemistry and Molecular Biology 38, 66-75.

Mao W, Berhow MA, Zangerl AR, McGovern J, Berenbaum MR. 2006. Cytochrome P450-mediated metabolism of xanthotoxin by Papilio multicaudatus. J Chem Ecol.32 :523-36. https://doi.org/10.1007/s10886-005-9018-3

Mao W, Rupasinghe SG, Zangerl AR, Berenbaum MR, Schuler MA. 2007. Allelic variation in the Depressaria pastinacella CYP6AB3 protein enhances metabolism of plant allelochemicals by altering a proximal surface residue and potential interactions with cytochrome P450 reductase. J Biol Chem. 282:10544-52. https://doi.org/10.1074/jbc.M607946200

Mao, W., Rupasinghe, S. G., Johnson, R. M, Zangerl, A R., Schuler, MA, Berenbaum, MR. 2009. Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera Hymenoptera: Apidae. Comp Biochem Physiol B Biochem Mol Biol 154, 427-34.

Mao W, Rupasinghe S, Zangerl AR, Schuler MA, Berenbaum MR. 2006 Remarkable substrate-specificity of CYP6AB3 in Depressaria pastinacella, a highly specialized caterpillar. Insect Mol Biol. 15:169-79. https://doi.org/10.1111/j.1365-2583.2006.00623.x.

Mao, W., Schuler, M.A., Berenbaum, M.R., 2017. Disruption of quercetin metabolism by fungicide affects energy production in honey bees ( Apis mellifera ). Proc Natl Acad Sci USA 114, 2538–2543. https://doi.org/10.1073/pnas.1614864114

Mao, W., Schuler, M.A., Berenbaum, M.R., 2015. Task-related differential expression of four cytochrome P450 genes in honeybee appendages: Differential expression of P450s in honeybees. Insect Molecular Biology 24, 582–588. https://doi.org/10.1111/imb.12183

Mao, W., Schuler, M.A., Berenbaum, M.R., 2015. A dietary phytochemical alters caste-associated gene expression in honey bees. Sci. Adv. 1, e1500795. https://doi.org/10.1126/sciadv.1500795

Mao, W., Schuler, M.A., Berenbaum, M.R., 2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. U.S.A. 110, 8842–8846. https://doi.org/10.1073/pnas.1303884110

Mao, W., Schuler, M.A., Berenbaum, M.R., 2011. CYP9Q-mediated detoxification of acaricides in the honey bee ( Apis mellifera ). Proc. Natl. Acad. Sci. U.S.A. 108, 12657–12662. https://doi.org/10.1073/pnas.1109535108

Mao W, Schuler MA, Berenbaum MR 2007. Cytochrome P450s in Papilio multicaudatus and the transition from oligophagy to polyphagy in the Papilionidae. Insect Mol Biol, 16:481–490

Mao W, Zangerl AR, Berenbaum MR, Schuler MA 2008 Metabolism of myristicin by Depressaria pastinacella CYP6AB3v2 and inhibition by its metabolite. Insect Biochem Mol Biol.38:645-51. https://doi.org/10.1016/j.ibmb.2008.03.013.

Mao, Y., Cai, W., Wang, J., Hong, G., Tao, X., Wang, L., Huang, Y., Chen, X., 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25, 1307-1313.

Mao, Y.-B., Tao, X.-Y., Xue, X.-Y., Wang, L.-J., Chen, X.-Y., 2011. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20, 665–673. https://doi.org/10.1007/s11248-010-9450-1

Marchal, E., Badisco, L., Verlinden, H., Vandersmissen, T., Van Soest, S., Van Wielendaele, P., Vanden Broeck, J., 2011a. Role of the Halloween genes, Spook and Phantom in ecdysteroidogenesis in the desert locust, Schistocerca gregaria. Journal of Insect Physiology 57, 1240–1248. https://doi.org/10.1016/j.jinsphys.2011.05.009

Marchal, E., Verlinden, H., Badisco, L., Van Wielendaele, P., Vanden Broeck, J., 2012. RNAi-mediated knockdown of Shade negatively affects ecdysone-20-hydroxylation in the desert locust, Schistocerca gregaria. Journal of Insect Physiology 58, 890–896. https://doi.org/10.1016/j.jinsphys.2012.03.013

Marchal, E., Zhang, J., Badisco, L., Verlinden, H., Hult, E.F., Van Wielendaele, P., Yagi, K.J., Tobe, S.S., Vanden Broeck, J., 2011b. Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology 41, 219–227. https://doi.org/10.1016/j.ibmb.2010.12.007

Markov, G.V., Laudet, V., 2011. Origin and evolution of the ligand-binding ability of nuclear receptors. Molecular and Cellular Endocrinology 334, 21–30. https://doi.org/10.1016/j.mce.2010.10.017

Markov, G.V., Tavares, R., Dauphin-Villemant, C., Demeneix, B.A., Baker, M.E., Laudet, V., 2009. Independent elaboration of steroid hormone signaling pathways in metazoans.Proc Natl Acad Sci U S A 106: 11913-11918. https://doi.org/10.1073/pnas.0812138106

Marriage, T.N., King, E.G., Long, A.D., Macdonald, S.J., 2014. Fine-Mapping Nicotine Resistance Loci in Drosophila Using a Multiparent Advanced Generation Inter-Cross Population. Genetics 198, 45–57. https://doi.org/10.1534/genetics.114.162107

Marsano, R., Caizzi, R., Moschetti, R., Junakovic, N., 2005. Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster. Gene 357, 122-128.

Martin, T., Ochou, O.G., Vaissayre, M. and Fournier, D. 2003. Oxidases responsible for resistance to pyrethroids sensitize Helicoverpa armigera (Hubner) to triazophos in West Africa. Insect Biochem. Mol. Biol., 33, 883-887.

Martínez-Paz, P., Morales, M., Martínez-Guitarte, J.L., Morcillo, G., 2012. Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155, 333–343. https://doi.org/10.1016/j.cbpc.2011.10.001

Mason HS. 1955. Oxygen transfer and electron transport by the phenolase complex.. J Am Chem Soc.77:2914-2915. https://doi.org/10.1021/ja01615a088

Mason HS, Folwks WL, Peterson E. 1957. Mechanisms of oxygen metabolism. Science 25:1185-8. https://doi.org/10.1126/science.125.3259.1185

Matambo, T.S., Paine, M.J.I., Coetzee, M., Koekemoer, L.L., 2010. Sequence characterization of cytochrome P450 CYP6P9 in pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae). Genet Mol Res 9, 554-564.

Mathers, T.C., Chen, Y., Kaithakottil, G., Legeai, F., Mugford, S.T., Baa-Puyoulet, P., Bretaudeau, A., Clavijo, B., Colella, S., Collin, O., Dalmay, T., Derrien, T., Feng, H., Gabaldón, T., Jordan, A., Julca, I., Kettles, G.J., Kowitwanich, K., Lavenier, D., Lenzi, P., Lopez-Gomollon, S., Loska, D., Mapleson, D., Maumus, F., Moxon, S., Price, D.R.G., Sugio, A., van Munster, M., Uzest, M., Waite, D., Jander, G., Tagu, D., Wilson, A.C.C., van Oosterhout, C., Swarbreck, D., Hogenhout, S.A., 2017. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol 18, 27. https://doi.org/10.1186/s13059-016-1145-3

Matowo, J., Weetman, D., Pignatelli, P., Wright, A., Charlwood, J.D., Kaaya, R., Shirima, B., Moshi, O., Lukole, E., Mosha, J., Manjurano, A., Mosha, F., Rowland, M., Protopopoff, N., 2022. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS ONE 17, e0249440. https://doi.org/10.1371/journal.pone.0249440

Matsumoto, K., Kotaki, T., Numata, H., Shinada, T., Goto, S.G., 2021. Juvenile hormone III skipped bisepoxide is widespread in true bugs (Hemiptera: Heteroptera). R. Soc. open sci. 8, rsos.202242, 202242. https://doi.org/10.1098/rsos.202242

Matsunaga, E., Umeno, M, Gonzalez, F. J. 1990. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site. J Mol Evol 30, 155-69.

Mauchamp, B, Darrouzet, E., Malosse, C., Franck Couillaud. 1999. 4'-OH-JH-III: an additional hydroxylated juvenile hormone produced by locust corpora allata in vitro. Insect Biochemistry and Molecular Biology 29, 475-480.

Mayer, R., Durrant, J., 1979. Preparation of homogenous NADPH cytochrome c (P-450) reductase from house flies using affinity chromatography techniques. J Biol Chem 254, 756-761.

Mayer, R., Prough, R., 1977. Purification and characterization of NADPH-cytochrome c (P450) reductase from the house fly, Musca domestica. Comp Biochem Physiol [B] 57, 81-87.

McCart, C., ffrench-Constant, R., 2008. Dissecting the insecticide-resistance- associated cytochrome P450 gene Cyp6g1. Pest Manag Sci 64, 639-645.

McDonnell, C., Brown, R., Berenbaum, M., Schuler, M., 2004. Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem Mol Biol 34, 1129-1139.

McDonnell, C.M., King, D., Comeron, J.M., Li, H., Sun, W., Berenbaum, M.R., Schuler, M.A., Pittendrigh, B.R., 2012. Evolutionary Toxicogenomics: Diversification of the Cyp12d1 and Cyp12d3 Genes in Drosophila Species. J Mol Evol 74, 281–296. https://doi.org/10.1007/s00239-012-9506-3

McGraw, L.A., Gibson, G., Clark, A.G., Wolfner, M.F., 2004. Genes Regulated by Mating, Sperm, or Seminal Proteins in Mated Female Drosophila melanogaster. Current Biology 14, 1509–1514. https://doi.org/10.1016/j.cub.2004.08.028

Mcintosh JA, Heel T, Buller AR, Chio L, Arnold FH. 2015. Structural Adaptability Facilitates Histidine Heme Ligation in a Cytochrome P450. J. Am. Chem. Soc. 137: 13861-13865

McLaughlin, L., Niazi, U., Bibby, J., David, J., Vontas, J., Hemingway, J., Ranson, H., Sutcliffe, M., Paine, M., 2008. Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Mol Biol 17, 125-135.

McLeman, A., Troczka, B.J., Homem, R.A., Duarte, A., Zimmer, C., Garrood, W.T., Pym, A., Beadle, K., Reid, R.J., Douris, V., Vontas, J., Davies, T.G.E., ffrench Constant, R., Nauen, R., Bass, C., 2020. Fly-Tox: A panel of transgenic flies expressing pest and pollinator cytochrome P450s. Pesticide Biochemistry and Physiology 169, 104674. https://doi.org/10.1016/j.pestbp.2020.104674

Megias, A, Saborido, A, Municio, A M 1983. Properties of the NADH-cytochrome b5 reductase from Ceratitis capitata. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 74, 411-416.

Megias, A., Saborido, A. and Muncio, A.M. 1984. NADH-cytochrome b5 reductase from the insect Ceratitis capitata. Enzyme properties and membrane binding capacity. Comp. Biochem. Physiol., 77B, 679-685.

Meijer, N., Stoopen, G., van der Fels-Klerx, H.J., van Loon, J.J.A., Carney, J., Bosch, G., 2019. Aflatoxin B1 Conversion by Black Soldier Fly (Hermetia illucens) Larval Enzyme Extracts. Toxins 11, 532. https://doi.org/10.3390/toxins11090532

Meisel, R.P., Scott, J.G., 2018. Using genomic data to study insecticide resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology 151, 76–81. https://doi.org/10.1016/j.pestbp.2018.01.001

Meng, X., Zhang, Y., Bao, H., Liu, Z., 2015. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata. PLoS ONE 10, e0125242. https://doi.org/10.1371/journal.pone.0125242

Meng, X., Zhu, C., Feng, Y., Li, W., Shao, X., Xu, Z., Cheng, J., Li, Z., 2016. Computational Insights into the Different Resistance Mechanism of Imidacloprid versus Dinotefuran in Bemisia tabaci. J. Agric. Food Chem. 64, 1231–1238. https://doi.org/10.1021/acs.jafc.5b05181

Messenger, L.A., Impoinvil, L.M., Derilus, D., Yewhalaw, D., Irish, S., Lenhart, A., 2021. A whole transcriptomic approach provides novel insights into the molecular basis of organophosphate and pyrethroid resistance in Anopheles arabiensis from Ethiopia. Insect Biochemistry and Molecular Biology 139, 103655. https://doi.org/10.1016/j.ibmb.2021.103655

Miah, M.A., Elzaki, M.E.A., Han, Z., 2017. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus. Ecol Evol 7, 5032–5040. https://doi.org/10.1002/ece3.3047 [resistant irrelevant ? and now for something completely different…]

Miah, M.A., Elzaki, M.E.A., Husna, A., Han, Z., 2019. An overexpressed cytochrome P450 CYP439A1v3 confers deltamethrin resistance in Laodelphax striatellus Fallén (Hemiptera: Delpacidae) Arch. Insect Biochem. Physiol 100, e21525. https://doi.org/10.1002/arch.21525

Minakuchi, C., Ishii, F., Washidu, Y., Ichikawa, A., Tanaka, T., Miura, K., Shinoda, T., 2015. Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. Journal of Insect Physiology 80, 61–70. https://doi.org/10.1016/j.jinsphys.2015.04.008

Miota, F., Siegfried, B., Scharf, M., Lydy, M., 2000. Atrazine induction of cytochrome P450 in Chironomus tentans larvae. Chemosphere 40, 285-291.

Misof B, Liu S, Meusemann K, Peters RS, Donath A, et al. 2014 Phylogenomics resolves the timing and pattern of insect evolution. Science. 346: 763-767.

Misra, J.R., Horner, M.A., Lam, G., Thummel, C.S., 2011. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 25, 1796–1806. https://doi.org/10.1101/gad.17280911

Misra, J.R., Lam, G., Thummel, C.S., 2013. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochemistry and Molecular Biology 43, 1116–1124. https://doi.org/10.1016/j.ibmb.2013.09.005

Mittapalli, O., Neal, J., Shukle, R., 2005. Differential expression of two cytochrome P450 genes in compatible and incompatible Hessian fly/wheat interactions. Insect Biochem Mol Biol 35, 981-989.

Mitchell, M.J., Smith, S.L., 1988. Ecdysone 20-monooxygenase activity throughout the life cycle of Drosophila melanogaster. General and Comparative Endocrinology 72, 467–470. https://doi.org/10.1016/0016-6480(88)90170-0

Mitchell, M.J., Smith, S.L., 1986. Characterization of ecdysone 20-monooxygenase activity in wandering stage larvae of Drosophila melanogaster. Evidence for mitochondrial and microsomal cytochrome P-450 dependent systems. Insect Biochemistry 16, 525–537. https://doi.org/10.1016/0020-1790(86)90030-2

Mitchell, C.L., Saul, M.C., Lei, L., Wei, H., Werner, T., 2014. The Mechanisms Underlying α-Amanitin Resistance in Drosophila melanogaster: A Microarray Analysis. PLoS ONE 9, e93489. https://doi.org/10.1371/journal.pone.0093489

Mitchell, S.N., Stevenson, B.J., Müller, P., Wilding, C.S., Egyir-Yawson, A., Field, S.G., Hemingway, J., Paine, M.J.I., Ranson, H., Donnelly, M.J., 2012. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. U.S.A. 109, 6147–6152. https://doi.org/10.1073/pnas.1203452109

Mitlin, N., Konecky, M.S., 1955. The inhibition of development in the house fly by piperonyl butoxide. J Econ Entomol 48, 93-94.

Mittapelly, P., Bansal, R., Michel, A., 2019. Differential Expression of Cytochrome P450 CYP6 Genes in the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Pentatomidae). Journal of Economic Entomology 112, 1403–1410. https://doi.org/10.1093/jee/toz007

Miyashita M, Matsushita K, Nakamura S, Akahane S, Nakagawa Y, Miyagawa H. 2011. LC/MS/MS identification of 20-hydroxyecdysone in a scorpion Liocheles australasiae and its binding affinity to in vitro-translated molting hormone receptors. Insect Biochemistry and Molecular Biology 41: 932-937.

Miyata, U., Arakawa, K., Takei, M., Asami, T., Asanbou, K., Toshima, H., Suzuki, Y., 2021. Identification of an aromatic aldehyde synthase involved in indole-3-acetic acid biosynthesis in the galling sawfly (Pontania sp.) and screening of an inhibitor. Insect Biochemistry and Molecular Biology 137, 103639. https://doi.org/10.1016/j.ibmb.2021.103639

Miyo, T., Kono, Y., Oguma, Y., 2002. Genetic basis of cross-resistance to three organophosphate insecticides in Drosophila melanogaster (Diptera: Drosophilidae). J Econ Entomol 95, 871-877.

Moriyama, H., Nakanishi, K., King, D.S., Okauchi, T., Siddall, J.B., Hafferl, W., 1970. On the origin and metabolic fate of alpha-ecdysone in insects. General and Comparative Endocrinology 15, 80-87.

Morra, R., Kuruganti, S., Lam, V., Lucchesi, J., Ganguly, R., 2010. Functional analysis of the cis-acting elements responsible for the induction of the Cyp6a8 and Cyp6g1 genes of Drosophila melanogaster by DDT, phenobarbital and caffeine. Insect Mol Biol 19, 121-130.

Morton, R., Holwerda, B.C., 1985. The oxidative metabolism of malathion and malaoxon in resistant and susceptible strains of Drosophila melanogaster. Pestic Biochem Physiol 24, 19-31

Moss, S., Pretorius, E., Ceesay, S., Da Silva, E.T., Hutchins, H., Ndiath, M.O., Acford-Palmer, H., Collins, E.L., Higgins, M., Phelan, J., Jones, R.T., Vasileva, H., Rodrigues, A., Krishna, S., Clark, T.G., Last, A., Campino, S., 2024. Whole genome sequence analysis of population structure and insecticide resistance markers in Anopheles melas from the Bijagós Archipelago, Guinea-Bissau. Parasites Vectors 17, 396. https://doi.org/10.1186/s13071-024-06476-2

Mottet, C., Caddoux, L., Fontaine, S., Plantamp, C., Bass, C., Barrès, B., 2024. Myzus persicae resistance to neonicotinoids—unravelling the contribution of different mechanisms to phenotype. Pest Management Science ps.8316. https://doi.org/10.1002/ps.8316

Moulos, P., Alexandratos, A., Nellas, I., Dedos, S.G., 2018. Refining a steroidogenic model: an analysis of RNA-seq datasets from insect prothoracic glands. BMC Genomics 19, 537. https://doi.org/10.1186/s12864-018-4896-2

Moyes, C.L., Vontas, J., Martins, A.J., Ng, L.C., Koou, S.Y., Dusfour, I., Raghavendra, K., Pinto, J., Corbel, V., David, J.-P., Weetman, D., 2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11, e0005625. https://doi.org/10.1371/journal.pntd.0005625

Mpuru, S., Blomquist, G. J., Schal, C., Roux, M., Kuenzli, M., Dusticier, G., Clement, J. L., and Bagneres, A. G. 2001. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol 31, 139-155.

Mpuru, S., Reed, J.R., Reitz, R.C. and Blomquist, G.J. 1996. Mechanism of Hydrocarbon Biosynthesis from Aldehyde in Selected Insect Species: Requirement for O2 and NADPH and Carbonyl Group Released as CO2. Insect Biochem. Mol. Biol., 26, 203-208.

Muema, J.M., Bargul, J.L., Mutunga, J.M., Obonyo, M.A., Asudi, G.O., Njeru, S.N., 2021. Neurotoxic Zanthoxylum chalybeum root constituents invoke mosquito larval growth retardation through ecdysteroidogenic CYP450s transcriptional perturbations. Pesticide Biochemistry and Physiology 178, 104912. https://doi.org/10.1016/j.pestbp.2021.104912

Mugenzi, L.M.J., Akosah-Brempong, G., Tchouakui, M., Menze, B.D., Tekoh, T.A., Tchoupo, M., Nkemngo, F.N., Wondji, M.J., Nwaefuna, E.K., Osae, M., Wondji, C.S., 2022. Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana. BMC Infect Dis 22, 799. https://doi.org/10.1186/s12879-022-07795-4

Mugenzi, L.M.J., Menze, B.D., Tchouakui, M., Wondji, M.J., Irving, H., Tchoupo, M., Hearn, J., Weedall, G.D., Riveron, J.M., Cho‐Ngwa, F., Wondji, C.S., 2020. A 6.5‐kb intergenic structural variation enhances P450‐mediated resistance to pyrethroids in malaria vectors lowering bed net efficacy. Mol Ecol 29, 4395–4411. https://doi.org/10.1111/mec.15645

Mugenzi, L.M.J., Menze, B.D., Tchouakui, M., Wondji, M.J., Irving, H., Tchoupo, M., Hearn, J., Weedall, G.D., Riveron, J.M., Wondji, C.S., 2019. Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus. Nat Commun 10, 4652. https://doi.org/10.1038/s41467-019-12686-5

Mugenzi, L.M.J., Tekoh, T.A., Ntadoun, S.T., Chi, A.D., Gadji, M., Menze, B.D., Tchouakui, M., Irving, H., Wondji, M.J., Weedall, G.D., Hearn, J., Wondji, C.S., 2024. Association of a rapidly selected 4.3kb transposon-containing structural variation with a P450-based resistance to pyrethroids in the African malaria vector Anopheles funestus. PLoS Genet 20, e1011344. https://doi.org/10.1371/journal.pgen.1011344

Müller, C., Vogel, H., Heckel, D.G., 2017. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol Ecol 26, 6370–6383. https://doi.org/10.1111/mec.14349

Muller, P., Warr, E., Stevenson, B., Pignatelli, P., Morgan, J., Steven, A., Yawson, A., Mitchell, S., Ranson, H., Hemingway, J., Paine, M., Donnelly, M., 2008. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4, e1000286.

Müller, V., Buer, B., Lueke, B., Mazzoni, E., Pym, A., Bass, C., Nauen, R., 2023. Molecular characterization of pyrethroid resistance in field-collected populations of the pea aphid, Acyrthosiphon pisum. entomologia 102768. https://doi.org/10.1127/entomologia/2023/1848

Mullin, C.A., 1985. Detoxification enzyme relationships in arthropods of differing feeding strategies. ACS Symp. series, 1-7.

Mullin, C.A. 1986. Adaptive divergence of chewing and sucking arthropods to plant allelochemicals. In: Molecular aspects of insect-plant interactions(ed. L.B. Brattsten and S. Ahmad), p. 175-209. Plenum.

Mullin, C.A., Croft, B.A., Strickler, K., Matsumura, F., Miller, J.R., 1982. Detoxification Enzyme Differences Between a Herbivorous and Predatory Mite. Science 217, 1270–1272. https://doi.org/10.1126/science.217.4566.1270

Mumoki, F.N., Yusuf, A.A., Pirk, C.W.W., Crewe, R.M., 2019. Hydroxylation patterns associated with pheromone synthesis and composition in two honey bee subspecies Apis mellifera scutellata and A. m. capensis laying workers. Insect Biochemistry and Molecular Biology 114, 103230. https://doi.org/10.1016/j.ibmb.2019.103230

Muñoz, P., López, C., Moralejo, M., Pérez-Hedo, M., Eizaguirre, M., 2014. Response of Last Instar Helicoverpa armígera Larvae to Bt Toxin Ingestion: Changes in the Development and in the CYP6AE14, CYP6B2 and CYP9A12 Gene Expression. PLoS ONE 9, e99229. https://doi.org/10.1371/journal.pone.0099229

Munro, A W., Girvan, H. M, McLean, K. J. 2007. Cytochrome P450–redox partner fusion enzymes. Biochim Biophys Acta 1770, 345-59.

Muramatsu, M., Tsuji, T., Tanaka, S., Shiotsuki, T., Jouraku, A., Miura, K., Vea, I.M., Minakuchi, C., 2020. Sex-specific expression profiles of ecdysteroid biosynthesis and ecdysone response genes in extreme sexual dimorphism of the mealybug Planococcus kraunhiae (Kuwana). PLoS ONE 15, e0231451. https://doi.org/10.1371/journal.pone.0231451

Murataliev, M.B., Feyereisen, R. 1999. Mechanism of cytochrome P450 reductase from the house fly: evidence for an FMN semiquinone as electron donor. FEBS Lett 453, 201-4.https://doi.org/10.1016/s0014-5793(99)00723-1

Murataliev, M.B., Feyereisen, R. 2000. Interaction of NADPH with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Biochemistry 39, 5066-74.https://doi.org/10.1021/bi992917k

Murataliev, M.B., Ariño, A., Guzov, V.M., Feyereisen, R., 1999. Kinetic mechanism of cytochrome P450 reductase from the house fly (Musca domestica). Insect Biochemistry and Molecular Biology 29, 233–242. https://doi.org/10.1016/S0965-1748(98)00131-3

Murataliev, M.B., Feyereisen, R., Walker, F. A 2004. Electron transfer by diflavin reductases. Biochem Biophys Acta 1698, 1-26.https://doi.org/10.1016/j.bbapap.2003.10.003

Murataliev, M.B., Guzov, V., Walker, F., Feyereisen, R., 2008. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis. Insect Biochemistry and Molecular Biology 38, 1008–1015. https://doi.org/10.1016/j.ibmb.2008.08.007

Murataliev, M.B., Trinh, L.N., Moser, L.V., Bates, R.B., Feyereisen, R., Walker, F.A., 2004. Chimeragenesis of the Fatty Acid Binding Site of Cytochrome P450BM3. Replacement of Residues 73−84 with the Homologous Residues from the Insect Cytochrome P450 CYP4C7. Biochemistry 43, 1771–1780. https://doi.org/10.1021/bi035674b

Mykles, D.L., 2011. Ecdysteroid metabolism in crustaceans. The Journal of Steroid Biochemistry and Molecular Biology 127, 196–203. https://doi.org/10.1016/j.jsbmb.2010.09.001

Nadeau, J.A., Petereit, J., Tillett, R.L., Jung, K., Fotoohi, M., MacLean, M., Young, S., Schlauch, K., Blomquist, G.J., Tittiger, C., 2017. Comparative transcriptomics of mountain pine beetle pheromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genomics 18, 311. https://doi.org/10.1186/s12864-017-3696-4

Najarro, M.A., Hackett, J.L., Macdonald, S.J., 2017. Loci Contributing to Boric Acid Toxicity in Two Reference Populations of Drosophila melanogaster. G3 Genes|Genomes|Genetics 7, 1631–1641. https://doi.org/10.1534/g3.117.041418

Najarro, M.A., Hackett, J.L., Smith, B.R., Highfill, C.A., King, E.G., Long, A.D., Macdonald, S.J., 2015. Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila. PLoS Genet 11, e1005663. https://doi.org/10.1371/journal.pgen.100566

Nakao, T., Kawashima, M., Banba, S., 2019. Differential metabolism of neonicotinoids by Myzus persicae CYP6CY3 stably expressed in Drosophila S2 cells. J. Pestic. Sci. 44, 177–180. https://doi.org/10.1584/jpestics.D19-017

Nakaoka, T., Iga, M., Yamada, T., Koujima, I., Takeshima, M., Zhou, X., Suzuki, Y., Ogihara, M.H., Kataoka, H., 2017. Deep sequencing of the prothoracic gland transcriptome reveals new players in insect ecdysteroidogenesis. PLoS ONE 12, e0172951. https://doi.org/10.1371/journal.pone.0172951

Namiki T, Niwa R, Sakudoh T, Shirai K, Takeuchi H, Kataoka H. 2005. Cytochrome P450 CYP307A1/Spook: A regulator for ecdysone synthesis in insects. Biochem Biophys Res Commun 337: 367-374

Nauen, R., Bass, C., Feyereisen, R., Vontas, J., 2022. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Entomol. 67, 105–124. https://doi.org/10.1146/annurev-ento-070621-061328

Nauen, R., Vontas, J., Kaussmann, M., Wölfel, K., 2013. Pymetrozine is hydroxylated by CYP6CM1 , a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. Pest Management Science 69, 457–461. https://doi.org/10.1002/ps.3460

Nauen, R., Wölfel, K., Lueke, B., Myridakis, A., Tsakireli, D., Roditakis, E., Tsagkarakou, A., Stephanou, E., Vontas, J., 2015. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency. Pesticide Biochemistry and Physiology 121, 3–11. https://doi.org/10.1016/j.pestbp.2014.12.023

Nauen, R., Zimmer, C.T., Vontas, J., 2021. Heterologous expression of insect P450 enzymes that metabolize xenobiotics. Current Opinion in Insect Science 43, 78–84. https://doi.org/10.1016/j.cois.2020.10.011

Naumann, C., Hartmann, T., Ober, D. 2002. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxication of host plant-acquired pyrrolizidine alkaloid-defended arctiid moth Tyria Jacobaeae. Proc Natl Acad Sci U S A 99, 6085-6090.

Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, et al. 2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347: 1258522

Neal, J.J. 1987. Metabolic costs of mixed-function oxidase induction in Heliothis zea. Entomol. exp. appl., 43, 175-179.

Neal, J.J. and Reuveni, M. 1992. Separation of cytochrome P450 containing vesicles from the midgut microsomal fraction of Manduca sexta. Comp. Biochem. Physiol., 102C, 77-82.

Neal, J.J. and Wu, D. 1994. Inhibition of Insect Cytochromes P450 by Furanocoumarins. Pestic. Biochem. Physiol., 50, 43-50.

Nebert, D. W., Adesnik, M, Coon, M J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, B, Levin, W., Phillips, I. R., Sato, R., Waterman, MR. 1987. The P450 gene superfamily: recommended nomenclature. DNA 6, 1-11.

Nebert D, Nelson D, Coon M, Estabrook R, Feyereisen R, Fujii-Kuriyama Y, Gonzalez F, Guengerich F, Gunsalus I, Johnson E, et al. 1991. The P450 superfamily: update on new sequences, gene mapping, recommended nomenclature. DNA Cell Biol 10: 1-14 https://doi.org/10.1089/dna.1991.10.1

Nelson, D.R., 2018. Cytochrome P450 diversity in the tree of life. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1866, 141–154. https://doi.org/10.1016/j.bbapap.2017.05.003

Nelson, D.R. 2011. Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta 1814: 14-18

Nelson, D.R. 1998. Metazoan cytochrome P450 evolution. Comp Biochem Physiol C 121: 15-22

Nelson D.R., Goldstone JV, Stegeman JJ. 2013 The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philosophical Transactions of the Royal Society B: Biological Sciences. 368: 20120474-20120474.

Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12, 1-51.https://doi.org/10.1089/dna.1993.12.1

Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., et al. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6, 1-42. https://doi.org/10.1097/00008571-199602000-00002

Nelson, D. R., Zeldin, D. C., Hoffman, S. M, Maltais, L. J., Wain, H. M, Nebert, D. W. 2004. Comparison of cytochrome P450 CYP genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14, 1-18.

Neve, E. P., Ingelman-Sundberg, M 2008. Intracellular transport and localization of microsomal cytochrome P450. Anal Bioanal Chem 392, 1075-84.

Ni, R., Wang, Y., Zhong, Q., Li, M., Zhang, D., Zhang, Y., Qiu, X., 2023. Absence of known knockdown resistance mutations but fixation of CYP337B3 was detected in field populations of Helicoverpa armigera across China. Pesticide Biochemistry and Physiology 195, 105542. https://doi.org/10.1016/j.pestbp.2023.105542

Nie, H., Xu, S., Xie, C., Geng, H., Zhao, Y., Li, J., Huang, W., Lin, Y., Li, Z., Su, S., 2018. Comparative transcriptome analysis of Apis mellifera antennae of workers performing different tasks. Mol Genet Genomics 293, 237–248. https://doi.org/10.1007/s00438-017-1382-5

Nikou, D., Ranson, H., Hemingway, J. 2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318, 91-102.

Nishikawi, H., 2004. metabolism of imidacloprid in houselfies. J. Pestic. Sci. 29, 110-116.

Nitao, J.K. 1989. Enzymatic adaptation in a specialist herbivore for feeding on furanocoumarin-containing plants. Ecology, 70, 629-635.

Nitao, J.K. 1990. Metabolism and excretion of the furanocoumarin xanthotoxin by parsnip webworm, Depressaria pastinacella. J. Chem. Ecol., 16, 417-428.

Nitao, J.K., Berhow, M., Duval, S.M., Weisleder, D., Vaughn, S.F., Zangerl, A. and Berenbaum, M.R. 2003. Characterization of furanocoumarin metabolites in parsnip webworm, Depressaria pastinacella. J. Chem. Ecol., 29, 671-682.

Niu, G., Rupasinghe, S.G., Zangerl, A.R., Siegel, J.P., Schuler, M.A., Berenbaum, M.R., 2011. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochemistry and Molecular Biology 41, 244–253. https://doi.org/10.1016/j.ibmb.2010.12.009

Niu, G., Wen, Z., Rupasinghe, S. G., Zeng, R. S., Berenbaum, MR., Schuler, MA 2008. Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea. Arch Insect Biochem Physiol 69, 32-45.

Niwa, R., Matsuda, T., Yoshiyama, T., Namiki, T., Mita, K., Fujimoto, Y., Kataoka, H. 2004. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem 279, 35942-9.

Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, Kayukawa T, Banno Y, Fujimoto Y, Shigenobu S, Kobayashi S, Shimada T, Katsuma S, Shinoda T. 2010. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid biosynthesis pathway. Development. 137:1991-9. https://doi.org/10.1242/dev.045641

Niwa, R., Niwa, Y.S., 2014. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Bioscience, Biotechnology, and Biochemistry 78, 1283–1292. https://doi.org/10.1080/09168451.2014.942250

Niwa, R., Sakudoh, T., Namiki, T., Saida, K., Fujimoto, Y., Kataoka, H., 2005. The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol Biol 14, 563-571.

Niwa, R., Sakudoh, T., Matsuya, T., Namiki, T., Kasai, S., Tomita, T., Kataoka, H., 2011. Expressions of the cytochrome P450 monooxygenase gene Cyp4g1 and its homolog in the prothoracic glands of the fruit fly Drosophila melanogaster (Diptera: Drosophilidae) and the silkworm Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 46, 533–543. https://doi.org/10.1007/s13355-011-0074-6

Niwa T, Murayama N, Yamazaki H. 2009. Oxidation of endobiotics mediated by xenobiotic-metabolizing forms of human cytochrome. Curr Drug Metab 10: 700-712

Njoroge, H., van’t Hof, A., Oruni, A., Pipini, D., Nagi, S.C., Lynd, A., Lucas, E.R., Tomlinson, S., Grau‐Bove, X., McDermott, D., Wat’senga, F.T., Manzambi, E.Z., Agossa, F.R., Mokuba, A., Irish, S., Kabula, B., Mbogo, C., Bargul, J., Paine, M.J.I., Weetman, D., Donnelly, M.J., 2022. Identification of a rapidly‐spreading triple mutant for high‐level metabolic insecticide resistance in Anopheles gambiae provides a real‐time molecular diagnostic for antimalarial intervention deployment. Molecular Ecology 31, 4307–4318. https://doi.org/10.1111/mec.16591

Nkosi BVZ, Padayachee T, Gront D, Nelson DR, Syed K. 2022. Contrasting Health Effects of Bacteroidetes and Firmicutes Lies in Their Genomes: Analysis of P450s, Ferredoxins, and Secondary Metabolite Clusters. Int J Mol Sci. 23:5057. https://doi.org/10.3390/ijms23095057

Nolden, M., Brockmann, A., Ebbinghaus-Kintscher, U., Brueggen, K.-U., Horstmann, S., Paine, M.J.I., Nauen, R., 2021. Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification. Current Research in Parasitology & Vector-Borne Diseases 1, 100041. https://doi.org/10.1016/j.crpvbd.2021.100041

Nolden, M., Paine, M.J.I., Nauen, R., 2022a. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b5 and its role in pyrethroid and coumarin substrate metabolism. Pesticide Biochemistry and Physiology 182, 105051. https://doi.org/10.1016/j.pestbp.2022.105051

Nolden, M., Paine, M.J.I., Nauen, R., 2022b. Sequential phase I metabolism of pyrethroids by duplicated CYP6P9 variants results in the loss of the terminal benzene moiety and determines resistance in the malaria mosquito Anopheles funestus. Insect Biochemistry and Molecular Biology 148, 103813. https://doi.org/10.1016/j.ibmb.2022.103813

Nolden, M., Velten, R., Paine, M.J.I., Nauen, R., 2023. Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus. Pesticide Biochemistry and Physiology 191, 105356. https://doi.org/10.1016/j.pestbp.2023.105356

Noriega FG, Ribeiro JMC, Koener JF, Valenzuela JG, Hernandez-Martinez S, Pham VM, Feyereisen R. 2006. Comparative genomics of insect juvenile hormone biosynthesis. Insect Biochem Mol Biol 36: 366-374. https://doi.org/10.1016/j.ibmb.2006.01.013

North, H.L., Fu, Z., Metz, R., Stull, M.A., Johnson, C.D., Shirley, X., Crumley, K., Reisig, D., Kerns, D.L., Gilligan, T., Walsh, T., Jiggins, C.D., Sword, G.A., 2024. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Molecular Biology and Evolution 41, msae129. https://doi.org/10.1093/molbev/msae129

Nouzova, M., Edwards, M.J., Michalkova, V., Ramirez, C.E., Ruiz, M., Areiza, M., DeGennaro, M., Fernandez-Lima, F., Feyereisen, R., Jindra, M., Noriega, F.G., 2021. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc. Natl. Acad. Sci. U.S.A. 118, e2109381118. https://doi.org/10.1073/pnas.2109381118

Nufer, M.I., Coates, B.S., Abel, C.A., O’Neill, P., McCracken, M., Jain, D., Pierce, C.A., Glover, J., Towles, T., Reddy, G.V., Perera, O.P., 2024. Anatomy of a pest control failure: Introgression of cytochrome P450 337B3 alleles from invasive old-world bollworm into native corn earworm. https://doi.org/10.1101/2024.03.22.584691

Oakeshott, J.G., Farnsworth, C.A., East, P.D., Scott, C., Han, Y., Wu, Y., Russell, R.J., 2013. How many genetic options for evolving insecticide resistance in heliothine and spodopteran pests? Pest. Manag. Sci. 69, 889–896. https://doi.org/10.1002/ps.3542

Oakeshott, J., Johnson, R., Berenbaum, M., Ranson, H., Cristino, A., Claudianos, C., 2010. Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol Biol 19 Suppl 1, 147-163.

Ogihara, M.H., Hikiba, J., Suzuki, Y., Taylor, D., Kataoka, H., 2015. Ovarian Ecdysteroidogenesis in Both Immature and Mature Stages of an Acari, Ornithodoros moubata. PLoS ONE 10, e0124953. https://doi.org/10.1371/journal.pone.0124953

Ogihara, M.H., Ikeda, H., Yamada, N., Hikiba, J., Nakaoka, T., Fujimoto, Y., Suzuki, Y., Saito, K., Mizoguchi, A., Kataoka, H., 2017. Identification of ecdysteroidogenic enzyme genes and their expression during pupal diapause in the cabbage armyworm, Mamestra brassicae: Ecdysteroidogenic enzymes during diapause. Insect Mol Biol 26, 286–297. https://doi.org/10.1111/imb.12291

Ogihara MH, Taylor D, Kataoka H. 2019. Steroid hormones in Acari, their functions and synthesis. Appl Entomol Zool: 1-16

Ohnuki, S., Tokishita, S., Kojima, M., Fujiwara, S., 2024. Effect of chlorpyrifos‐exposure on the expression levels of CYP genes in Daphnia magna and examination of a possibility that an up‐regulated clan 3 CYP , CYP360A8 , reacts with pesticides. Environmental Toxicology tox.24224. https://doi.org/10.1002/tox.24224

Oi, M., Dauterman, W.C. and Motoyama, N. (1990) Biochemical Factors Responsble for an Extremely High Level of Diazinon Resistance in a Housefly Strain. J. Pesticide Science, 15, 217-224.

Okamoto, N., Fujinaga, D., Yamanaka, N., 2023. Steroid hormone signaling: What we can learn from insect models, in: Vitamins and Hormones. Elsevier, pp. 525–554. https://doi.org/10.1016/bs.vh.2022.12.006

Omura, T. 2011 Recollection of the early years of the research on cytochrome P450, Proceedings of the Japan Academy, Series B 87: 617-640, https://doi.org/10.2183/pjab.87.617

Omura, T. 1993. History of cytochrome P450. In Cytochrome P-450, second ed. Omura, T., Ishimura, Y., and Fujii-Kuriyama, Y., eds., pp. 1-15. Kodansha, Tokyo.

Omura, T., Gotoh, O., 2017. Evolutionary origin of mitochondrial cytochrome P450. The Journal of Biochemistry 161, 399–407. https://doi.org/10.1093/jb/mvx011

Omura, T., Sato, R. 1962 A new cytochrome in liver microsomes. J Biol Chem. 1962 Apr;237:1375-6.

Omura, T., Sato, R. 1964a. The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem 239, 2370-2378 . Omura, T., Sato, R. 1964b. The carbon monoxide-binding pigment of liver microsomes II. Solubilization, purification, and properties. J Biol Chem. 239:2379-85.

Ono, H., Ozaki, K., Yoshikawa, H., 2005. Identification of cytochrome P450 and glutathione-S-transferase genes preferentially expressed in chemosensory organs of the swallowtail butterfly, Papilio xuthus L. Insect Biochem Mol Biol 35, 837-846.

Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren JT, Marqués G, Shimell MJ, et al. 2006. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol 298: 555-570

Orengo D, Aguade M 2007. Genome scans of variation and adaptive change: extended analysis of a candidate locus close to the phantom gene region in Drosophila melanogaster. Mol Biol Evol 24: 1122-1129

Ortiz de Montellano, P. R., Graham-Lorence, S. E. 1993. Structure of cytochrome P450: heme-binding site and heme reactivity. In Cytochrome P450 Schenkman, J. B., and Greim, H., eds., pp. 169-181. Springer-Verlag, Berlin.

Ortiz de Montellano, P. R. 1995. Oxygen activation and reactivity. In Cytochrome P450, second ed. Ortiz de Montellano, P. R., ed, pp. 245-303. Plenum Press, New York and London.

Ortiz de Montellano, P. R., Correia, MA 1995. Inhibition of cytochrome P450 enzymes. In Cytochrome P450, Second ed. Ortiz de Montellano, P. R., ed, pp. 305-364. Plenum Press, New York and London.

Ortiz de Montellano, P. R., ed. 2005. Cytochrome P450, Structure, Mechanism, and Biochemistry third ed.. Kluwer Academic / Plenum Publishers, New York.

Oruni, A., Tchouakui, M., Tagne, C.S.D., Hearn, J., Kayondo, J., Wondji, C.S., 2024. Temporal evolution of insecticide resistance and bionomics in Anopheles funestus, a key malaria vector in Uganda. Sci Rep 14, 32027. https://doi.org/10.1038/s41598-024-83689-6

Ou, Q., Magico, A., King-Jones, K., 2011. Nuclear Receptor DHR4 Controls the Timing of Steroid Hormone Pulses During Drosophila Development. PLoS Biol 9, e1001160. https://doi.org/10.1371/journal.pbio.1001160

Ou, Q., Zeng, J., Yamanaka, N., Brakken-Thal, C., O’Connor, M.B., King-Jones, K., 2016. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Reports 16, 247–262. https://doi.org/10.1016/j.celrep.2016.05.053

Paim, R.M.M., Pessoa, G.C.D., Nascimento, B.W.L., Nascimento, A.M.D., Pinheiro, L.C., Koerich, L.B., Diotaiuti, L., Araujo, R.N., Sant’Anna, M.R.V., Gontijo, N.F., Pereira, M.H., 2022. Effect of salivary CYP4EM1 and CYP4EM2 gene silencing on the life span of Chagas disease vector Rhodnius prolixus (Hemiptera, Reduviidae) exposed to sublethal dose of deltamethrin. Insect Molecular Biology 31, 49–59. https://doi.org/10.1111/imb.12737

Palli, S.R., 2020. CncC/Maf‐mediated xenobiotic response pathway in insects. Arch Insect Biochem Physiol 104. https://doi.org/10.1002/arch.21674

Pan D, Xia M, Li C, Liu X, Archdeacon L, O'Reilly AO, Yuan G, Wang J, Dou W. 2023. CYP4CL2 Confers Metabolic Resistance to Pyridaben in the Citrus Pest Mite Panonychus citri. J Agric Food Chem.71:19465-19474. https://doi.org/10.1021/acs.jafc.3c06921.

Pan, F., Fu, Y., Zhang, W., Jiang, S., Xiong, Y., Yan, Y., Gong, Y., Qiao, H., Fu, H., 2022. Characterization, expression and functional analysis of CYP306a1 in the oriental river prawn, Macrobrachium nipponense. Aquaculture Reports 22, 101009. https://doi.org/10.1016/j.aqrep.2022.101009

Pan, L., Wen, Z., Baudry, J., Berenbaum, M., Schuler, M., 2004. Identification of variable amino acids in the SRS1 region of CYP6B1 modulating furanocoumarin metabolism. Arch Biochem Biophys 422, 31-41.

Pan, X., Connacher, R.P., O’Connor, M.B., 2021. Control of the insect metamorphic transition by ecdysteroid production and secretion. Current Opinion in Insect Science 43, 11–20. https://doi.org/10.1016/j.cois.2020.09.004

Pan, Y., Chai, P., Zheng, C., Xu, H., Wu, Y., Gao, X., Xi, J., Shang, Q., 2018. Contribution of cytochrome P450 monooxygenase CYP380C6 to spirotetramat resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology 148, 182–189. https://doi.org/10.1016/j.pestbp.2018.04.015

Pan, Y., Peng, T., Xu, P., Zeng, X., Tian, F., Song, J., Shang, Q., 2019. Transcription Factors AhR/ARNT Regulate the Expression of CYP6CY3 and CYP6CY4 Switch Conferring Nicotine Adaptation. IJMS 20, 4521. https://doi.org/10.3390/ijms20184521

Pang, R., Chen, M., Liang, Z., Yue, X., Ge, H., Zhang, W., 2016. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens. Sci Rep 6, 34992. https://doi.org/10.1038/srep34992

Pang, R., Li, Y., Dong, Y., Liang, Z., Zhang, Y., Zhang, W., 2014. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, N ilaparvata lugens: Promoter polymorphisms in P450 CYP6AY1. Insect Mol Biol 23, 768–778. https://doi.org/10.1111/imb.12121

Pang, R., Xing, K., Yuan, L., Liang, Z., Chen, M., Yue, X., Dong, Y., Ling, Y., He, X., Li, X., Zhang, W., 2021. Peroxiredoxin alleviates the fitness costs of imidacloprid resistance in an insect pest of rice. PLoS Biol 19, e3001190. https://doi.org/10.1371/journal.pbio.3001190

Panini, M., Tozzi, F., Bass, C., Zimmer, C.T., Field, L., Borzatta, V., Mazzoni, E., Moores, G., 2017. The interactions of piperonyl butoxide and analogues with the metabolic enzymes FE4 and CYP6CY3 of the green peach aphid Myzus persicae (Hemiptera: Aphididae): Interactions of PBO and analogues with metabolic enzymes of M. persicae. Pest. Manag. Sci. 73, 371–379. https://doi.org/10.1002/ps.4314

Papapostolou, K.M., Riga, M., Samantsidis, G.-R., Skoufa, E., Balabanidou, V., Van Leeuwen, T., Vontas, J., 2022. Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology 142, 103709. https://doi.org/10.1016/j.ibmb.2021.103709

Park, K., Bang, H.W., Park, J., Kwak, I.-S., 2009. Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 77, 359–367. https://doi.org/10.1016/j.chemosphere.2009.07.019

Parker, R. S., McCormick, C. C. 2005. Selective accumulation of alpha-tocopherol in Drosophila is associated with cytochrome P450 tocopherol-omega-hydroxylase activity but not alpha-tocopherol transfer protein. Biochem Biophys Res Commun 338, 1537-41.

Parvizi, E., Bachler, A., Zwick, A., Walsh, T.K., Moritz, C., McGaughran, A., 2024. Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth. Journal of Evolutionary Biology voae068. https://doi.org/10.1093/jeb/voae068

Pathak, J., Ramasamy, G.G., Agrawal, A., Srivastava, S., Basavaarya, B.R., Muthugounder, M., Muniyappa, V.K., Maria, P., Rai, A., Venkatesan, T., 2022. Comparative Transcriptome Analysis to Reveal Differentially Expressed Cytochrome P450 in Response to Imidacloprid in the Aphid Lion, Chrysoperla zastrowi sillemi (Esben-Petersen). Insects 13, 900. https://doi.org/10.3390/insects13100900

Paula, D.P., Menger, J., Andow, D.A., Koch, R.L., 2020. Diverse patterns of constitutive and inducible overexpression of detoxifying enzyme genes among resistant Aphis glycines populations. Pesticide Biochemistry and Physiology 164, 100–114. https://doi.org/10.1016/j.pestbp.2019.12.012

Pavlidi, N., Gioti, A., Wybouw, N., Dermauw, W., Ben-Yosef, M., Yuval, B., Jurkevich, E., Kampouraki, A., Van Leeuwen, T., Vontas, J., 2017. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci Rep 7, 42633. https://doi.org/10.1038/srep42633

Pavlidi, N., Kampouraki, A., Tseliou, V., Wybouw, N., Dermauw, W., Roditakis, E., Nauen, R., Van Leeuwen, T., Vontas, J., 2018. Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology 148, 1–7. https://doi.org/10.1016/j.pestbp.2018.03.011

Pavlidi, N., Monastirioti, M., Daborn, P., Livadaras, I., Van Leeuwen, T., Vontas, J., 2012. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster. Pestic. Biochem. Physiol. 104, 132–135.

Pedersen, K.E., Pedersen, N.N., Meyling, N.V., Fredensborg, B.L., Cedergreen, N., 2020. Differences in life stage sensitivity of the beetle Tenebrio molitor towards a pyrethroid insecticide explained by stage-specific variations in uptake, elimination and activity of detoxifying enzymes. Pesticide Biochemistry and Physiology 162, 113–121. https://doi.org/10.1016/j.pestbp.2019.09.009

Pei, X.-J., Chen, N., Bai, Y., Qiao, J.-W., Li, S., Fan, Y.-L., Liu, T.-X., 2019. BgFas1: A fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L.). Insect Biochemistry and Molecular Biology 112, 103203. https://doi.org/10.1016/j.ibmb.2019.103203

Pelaez, J.N., Gloss, A.D., Goldman-Huertas, B., Kim, B., Lapoint, R.T., Pimentel-Solorio, G., Verster, K.I., Aguilar, J.M., Dittrich, A.C.N., Singhal, M., Suzuki, H.C., Matsunaga, T., Armstrong, E.E., Charboneau, J.L.M., Hembry, D.H., Ochoa, C.J., O’Connor, T.K., Prost, S., Zaaijer, S., Nabity, P.D., Wang, J., Rodas, E., Liang, I., Whiteman, N.K., 2023. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. G3 (Bethesda)13(8):jkad133. https://doi.org/10.1093/g3journal/jkad133

Peng, C., Yin, H., Liu, Y., Mao, X.-F., Liu, Z.-Y., 2022. RNAi Mediated Gene Silencing of Detoxification Related Genes in the Ectropis oblique. Genes 13, 1141. https://doi.org/10.3390/genes13071141

Peng, L., Wang, L., Zou, M.-M., Vasseur, L., Chu, L.-N., Qin, Y.-D., Zhai, Y.-L., You, M.-S., 2019. Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene shadow in Plutella xylostella. Front. Physiol. 10, 1120. https://doi.org/10.3389/fphys.2019.01120

Peng, L., Zhao, Y., Wang, H., Song, C., Shangguan, X., Ma, Y., Zhu, L., He, G., 2017. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice. Front. Physiol. 8, 972. https://doi.org/10.3389/fphys.2017.00972

Peng, T., Chen, X., Pan, Y., Zheng, Z., Wei, X., Xi, J., Zhang, J., Gao, X., Shang, Q., 2017. Transcription factor aryl hydrocarbon receptor / aryl hydrocarbon receptor nuclear translocator is involved in regulation of the xenobiotic tolerance-related cytochrome P450 CYP6DA2 in Aphis gossypii Glover. Insect Mol Biol 26, 485–495. https://doi.org/10.1111/imb.12311

Peng, T., Liu, X., Tian, F., Xu, H., Yang, F., Chen, X., Gao, X., Lv, Y., Li, J., Pan, Y., Shang, Q., 2022. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. Pest Management Science 78, 1982–1991. https://doi.org/10.1002/ps.6818

Peng, T., Pan, Y., Gao, X., Xi, J., Zhang, L., Ma, K., Wu, Y., Zhang, J., Shang, Q., 2016a. Reduced abundance of the CYP6CY3-targeting let-7 and miR-100 miRNAs accounts for host adaptation of Myzus persicae nicotianae. Insect Biochemistry and Molecular Biology 75, 89–97. https://doi.org/10.1016/j.ibmb.2016.06.002

Peng, T., Pan, Y., Gao, X., Xi, J., Zhang, L., Yang, C., Bi, R., Yang, S., Xin, X., Shang, Q., 2016. Cytochrome P450 CYP6DA2 regulated by cap ‘n’collar isoform C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover: Gossypol tolerance in Aphis gossypii Glover. Insect Mol Biol 25, 450–459. https://doi.org/10.1111/imb.12230

Peng, Tianfei, Pan, Y., Yang, C., Gao, X., Xi, J., Wu, Y., Huang, X., Zhu, E., Xin, X., Zhan, C., Shang, Q., 2016b. Over-expression of CYP6A2 is associated with spirotetramat resistance and cross-resistance in the resistant strain of Aphis gossypii Glover. Pesticide Biochemistry and Physiology 126, 64–69. https://doi.org/10.1016/j.pestbp.2015.07.008 [this is not CYP6A2 but CYP6DA2]

Perini, C.R., Tabuloc, C.A., Chiu, J.C., Zalom, F.G., Stacke, R.F., Bernardi, O., Nelson, D.R., Guedes, J.C., 2021. Transcriptome Analysis of Pyrethroid-Resistant Chrysodeixis includens (Lepidoptera: Noctuidae) Reveals Overexpression of Metabolic Detoxification Genes. Journal of Economic Entomology 114, 274–283. https://doi.org/10.1093/jee/toaa233

Perry, A.S., Dale, W.E., Buckner, A.J., 1971. Induction and repression of microsomal mixed-function oxidases and cytochrome P-450 in resistant and susceptible houseflies. Pestic Biochem Physiol 1, 131-142.

Perry, T., Batterham, P., Daborn, P.J., 2011. The biology of insecticidal activity and resistance. Insect Biochemistry and Molecular Biology 41, 411–422. https://doi.org/10.1016/j.ibmb.2011.03.003

Petersen, R.A., Zangerl, A.R., Berenbaum, M.R. and Schuler, M.A. 2001. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae).Insect Biochem. Mol. Biol., 31, 679-90.

Petersen, R.A., Niamsup, H., Berenbaum, M.R. and Schuler, M.A. 2003. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. Biochimica et Biophysica Acta (BBA) - General Subjects, 1619, 269-282.

Petersen Brown, R., Berenbaum, M., Schuler, M., 2004. Transcription of a lepidopteran cytochrome P450 promoter is modulated by multiple elements in its 5' UTR and repressed by 20-hydroxyecdysone. Insect Mol Biol 13, 337-347.

Petryk A, Warren J, Marques G, Jarcho MP, Gilbert L, Kahler J, Parvy J, Li Y, Dauphin-Villemant C, O'Connor M 2003. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc Natl Acad Sci U S A 100: 13773-13778

Peyser, R.D., Lanno, S.M., Shimshak, S.J., Coolon, J.D., 2017. Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia. Insect Mol Biol 26, 715–720. https://doi.org/10.1111/imb.12329

Philippou, D., Borzatta, V., Capparella, E., Moroni, L., Field, L., Moores, G., 2016. The use of substituted alkynyl phenoxy derivatives of piperonyl butoxide to control insecticide-resistant pests: The use of PBO derivatives to control insecticide-resistant pests. Pest. Manag. Sci. 72, 1946–1950. https://doi.org/10.1002/ps.4234

Philippou, D., Borzatta, V., Capparella, E., Moroni, L., Field, L., Moores, G., 2013. The interactions between piperonyl butoxide and E4, a resistance‐associated esterase from the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). Pest Management Science 69, 499–506. https://doi.org/10.1002/ps.3400

Pikuleva, I. A, Mackman, R. L., Kagawa, N., Waterman, MR., Ortiz de Montellano, P. R. 1995. Active-site topology of bovine cholesterol side-chain cleavage cytochrome P450 P450scc and evidence for interaction of tyrosine 94 with the side chain of cholesterol. Arch Biochem Biophys 322, 189-197.

Pimprale, S.S., Besco, C.L., Bryson, P.K. and Brown, T.M. 1997. Increased susceptibility of pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae) to chlorfenapyr. J. Econ. Entomol., 90, 49-54.

Pinheiro de Castro, É.C., Demirtas, R., Orteu, A., Olsen, C.E., Motawie, M.S., Zikan Cardoso, M., Zagrobelny, M., Bak, S., 2020. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. Insect Biochemistry and Molecular Biology 116, 103259. https://doi.org/10.1016/j.ibmb.2019.103259

Piraneo, T.G., Bull, J., Morales, M.A., Lavine, L.C., Walsh, D.B., Zhu, F., 2015. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields. Sci Rep 5, 17090. https://doi.org/10.1038/srep17090

Pittendrigh, B., Aronstein, K., Zinkovsky, E., Andreev, O., Campbell, B., Daly, J., Trowell, S. and Ffrench-Constant, R.H. 1997. Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and -resistant strain. Insect Biochem. Mol. Biol., 27, 507-12.

Pittendrigh, B., Mocelin, G., Andreev, O., ffrench-Constant, R., 1996. The sequence of a Drosophila Cyp4e2 cytochrome P450-encoding cDNA. Gene 179, 295-296

Planelló, R., Aquilino, M., Beaugeard, L., Llorente, L., Herrero, Ó., Siaussat, D., Lécureuil, C., 2024. Unveiling Molecular Effects of the Secondary Metabolite 2-Dodecanone in the Model Hymenopteran Nasonia vitripennis. Toxics 12, 159. https://doi.org/10.3390/toxics12020159

Planelló, R., Llorente, L., Herrero, Ó., Novo, M., Blanco-Sánchez, L., Díaz-Pendón, J.A., Fernández-Muñoz, R., Ferrero, V., de la Peña, E., 2022. Transcriptome analysis of aphids exposed to glandular trichomes in tomato reveals stress and starvation related responses. Sci Rep 12, 20154. https://doi.org/10.1038/s41598-022-24490-1

Plapp, F.W., Jr. 1984. The genetic basis of insecticide resistance in the house fly: evidence that a single locus plays a major role in metabolic resistance to insecticides. Pestic. Biochem. Physiol., 22, 94-201.

Plettner, E., Slessor, K.N. and Winston, M.L. 1998. Biosynthesis of mandibular acids in honey bees (Apis mellifera): De novo synthesis, route of fatty acid hydroxylation and caste selective β-oxidation. Insect Biochem. Mol. Biol., 28, 31-42.

Podust LM, Poulos TL, Waterman MR. 2001. Crystal structure of cytochrome P450 14alpha -sterol demethylase CYP51 from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A.98:3068-73. https://doi.org/10.1073/pnas.061562898.

Podust LM, Stojan J, Poulos TL, Waterman MR. 2001. Substrate recognition sites in 14alpha-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J Inorg Biochem. 87:227-35. https://doi.org/10.1016/s0162-01340100388-9

Pokharel, P., 2023. No-cost meals might not exist for insects feeding on toxic plants. Biology Open 12, bio059800. https://doi.org/10.1242/bio.059800

Pondeville, E., David, J.-P., Guittard, E., Maria, A., Jacques, J.-C., Ranson, H., Bourgouin, C., Dauphin-Villemant, C., 2013. Microarray and RNAi Analysis of P450s in Anopheles gambiae Male and Female Steroidogenic Tissues: CYP307A1 Is Required for Ecdysteroid Synthesis. PLoS ONE 8, e79861. https://doi.org/10.1371/journal.pone.0079861

Pondeville, E., Maria, A., Jacques, J.-C., Bourgouin, C., Dauphin-Villemant, C., 2008. Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proceedings of the National Academy of Sciences 105, 19631–19636. https://doi.org/10.1073/pnas.0809264105

Porter, T. D. 2002. The roles of cytochrome b5 in cytochrome P450 reactions. J. Biochem. Mol. Toxicol. 16, 311-316.

Porter, T. D., Beck, T. W., Kasper, C. B 1990. NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein. Biochemistry 29, 9814-8.

Porter TD, Kasper CB 1986. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry. 25:1682-7. https://doi.org/10.1021/bi00355a036.

Pospisilik, J.A., Schramek, D., Schnidar, H., Cronin, S.J.F., Nehme, N.T., Zhang, X., Knauf, C., Cani, P.D., Aumayr, K., Todoric, J., Bayer, M., Haschemi, A., Puviindran, V., Tar, K., Orthofer, M., Neely, G.G., Dietzl, G., Manoukian, A., Funovics, M., Prager, G., Wagner, O., Ferrandon, D., Aberger, F., Hui, C., Esterbauer, H., Penninger, J.M., 2010. Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate. Cell 140, 148–160. https://doi.org/10.1016/j.cell.2009.12.027

Poupardin, R., Reynaud, S., Strode, C., Ranson, H., Vontas, J., David, J., 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol 38, 540-551.

Poupardin, R., Riaz, M., Vontas, J., David, J., Reynaud, S., 2010. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19, 185-193.

Pottier, M. ‐A., Bozzolan, F., Chertemps, T., Jacquin‐Joly, E., Lalouette, L., Siaussat, D., Maïbèche‐Coisne, M., 2012. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm S podoptera littoralis . Insect Molecular Biology 21, 568–580. https://doi.org/10.1111/j.1365-2583.2012.01160.x

Poulos, T. L., Finzel, B C., Gunsalus, I. C., Wagner, G. C., Kraut, J. 1985. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. Journal of Biological Chemistry 260, 16122-16130.

Prapaipong, H., Berenbaum, M.R. and Schuler, M.A. 1994. Transcriptional regulation of the Papilio polyxenes CYP6B1 gene. Nucleic Acids Res, 22, 3210-7.

Pratt, G.E., Kuwano, E., Farnsworth, D.E. and Feyereisen, R. 1990. Structure/activity studies on 1,5-disubstituted imidazoles as inhibitors of juvenile hormone biosynthesis in isolated corpora allata of the cockroach, Diploptera punctata. Pestic. Biochem. Physiol., 38, 223-230.

Pridgeon, J.W., Zhang, L., Liu, N., 2003. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene 314, 157–163. https://doi.org/10.1016/S0378-11190300725-X

Pu, J., Sun, H., Wang, J., Wu, M., Wang, K., Denholm, I., Han, Z., 2016. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén). Insect Biochemistry and Molecular Biology 78, 20–28. https://doi.org/10.1016/j.ibmb.2016.08.008

Puinean, A., Foster, S., Oliphant, L., Denholm, I., Field, L., Millar, N., Williamson, M., Bass, C., 2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6, e1000999.

Pym, A., Mina, J.G.M., Troczka, B.J., Hayward, A., Daum, E., Elias, J., Slater, R., Vontas, J., Bass, C., Zimmer, C.T., 2023. A single point mutation in the Bemisia tabaci cytochrome-P450 CYP6CM1 causes enhanced resistance to neonicotinoids. Insect Biochemistry and Molecular Biology 156, 103934. https://doi.org/10.1016/j.ibmb.2023.103934

Pym, A., Troczka, B.J., Hayward, A., Zeng, B., Gao, C.-F., Elias, J., Slater, R., Zimmer, C.T., Bass, C., 2024. The role of the Bemisia tabaci and Trialeurodes vaporariorum cytochrome-P450 clade CYP6DPx in resistance to nicotine and neonicotinoids. Pesticide Biochemistry and Physiology 198, 105743. https://doi.org/10.1016/j.pestbp.2023.105743

Pym, A., Umina, P.A., Reidy-Crofts, J., Troczka, B.J., Matthews, A., Gardner, J., Hunt, B.J., van Rooyen, A.R., Edwards, O.R., Bass, C., 2022. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae. Insect Biochemistry and Molecular Biology 143, 103743. https://doi.org/10.1016/j.ibmb.2022.103743

Qi, H., Cao, H., Zhao, Y., Cao, Y., Jin, Q., Wang, Y., Zhang, K., Deng, D., 2023. Cloning and functional analysis of the molting gene CYP302A1 of Daphnia sinensis. Front Zool 20, 2. https://doi.org/10.1186/s12983-023-00483-2

Qian, J.-L., Luo, Z.-X., Li, J.-L., Cai, X.-M., Bian, L., Xiu, C.-L., Li, Z.-Q., Chen, Z.-M., Zhang, L.-W., 2020. Identification of cytochrome P450, odorant-binding protein, and chemosensory protein genes involved in Type II sex pheromone biosynthesis and transportation in the tea pest, Scopula subpunctaria. Pesticide Biochemistry and Physiology 169, 104650. https://doi.org/10.1016/j.pestbp.2020.104650

Qiao JW, Fan YL, Wu BJ, Bai TT, Wang YH, Zhang ZF, Wang D, Liu TX. 2021. Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. Insect Sci. https://doi.org/10.1111/1744-7917.12982.

Qin, P., Zheng, H., Tao, Y., Zhang, Y., Chu, D., 2023. Genome-Wide Identification and Expression Analysis of the Cytochrome P450 Gene Family in Bemisia tabaci MED and Their Roles in the Insecticide Resistance. IJMS 24, 5899. https://doi.org/10.3390/ijms24065899

Qiu, X., Li, W., Tian, Y., Leng, X., 2003. Cytochrome P450 monooxygenases in the cotton bollworm (Lepidoptera: Noctuidae): tissue difference and induction. J Econ Entomol 96, 1283-1289.

Qiu, X., Sun, W., McDonnell, C.M., Li-Byarlay, H., Steele, L.D., Wu, J., Xie, J., Muir, W.M., Pittendrigh, B.R., 2013. Genome-wide analysis of genes associated with moderate and high DDT resistance in Drosophila melanogaster: Genes associated with moderate and high DDT resistance in D . Melanogaster. Pest. Manag. Sci. 69, 930–937. https://doi.org/10.1002/ps.3454

Qiu, Y., Tittiger, C., Wicker-Thomas, C., Le Goff, G., Young, S., Wajnberg, E., Fricaux, T., Taquet, N., Blomquist, G.J., Feyereisen, R., 2012. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proceedings of the National Academy of Sciences 109, 14858–14863. https://doi.org/10.1073/pnas.1208650109

Qiu, Z., Liu, F., Lu, H., Yuan, H., Zhang, Q., Huang, Y., 2016. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii. IJMS 17, 1110. https://doi.org/10.3390/ijms17071110

Qu, Z., Bendena, W.G., Tobe, S.S., Hui, J.H.L., 2018. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. The Journal of Steroid Biochemistry and Molecular Biology 184, 69–76. https://doi.org/10.1016/j.jsbmb.2018.01.013

Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JHL. 2015. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes. Genome Biology and Evolution 7: 1951-1959

Quijano-Barraza, J.M., Zúñiga, G., Cano-Ramírez, C., López, M.F., Ramírez-Salinas, G.L., Becerril, M., 2023. Evolution and functional role prediction of the CYP6DE and CYP6DJ subfamilies in Dendroctonus (Curculionidae: Scolytinae) bark beetles. Front. Mol. Biosci. 10, 1274838. https://doi.org/10.3389/fmolb.2023.1274838

Rahman, M.M., Franch-Marro, X., Maestro, J.L., Martin, D., Casali, A., 2017. Local Juvenile Hormone activity regulates gut homeostasis and tumor growth in adult Drosophila. Sci Rep 7, 11677. https://doi.org/10.1038/s41598-017-11199-9

Ramakrishnan, R., Hradecký, J., Roy, A., Kalinová, B., Mendezes, R.C., Synek, J., Bláha, J., Svatoš, A., Jirošová, A., 2022. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. Insect Biochemistry and Molecular Biology 140, 103680. https://doi.org/10.1016/j.ibmb.2021.103680

Ramsey, J., Rider, D., Walsh, T., De Vos, M., Gordon, K., Ponnala, L., Macmil, S., Roe, B., Jander, G., 2010. Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol Biol 19 Suppl 2, 155-164.

Ramsey, J.S., Elzinga, D.A., Sarkar, P., Xin, Y.-R., Ghanim, M., Jander, G., 2014. Adaptation to Nicotine Feeding in Myzus persicae. J Chem Ecol 40, 869–877. https://doi.org/10.1007/s10886-014-0482-5

Ranasinghe, C., Hobbs, A.A., 1998. Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner): possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochemistry and Molecular Biology 28, 571–580. https://doi.org/10.1016/S0965-1748(98)00045-9

Ranasinghe, C., Hobbs, A A 1999. Isolation and characterisation of a cytochrome b5 cDNA clone from Helicoverpa armigera Hubner: possible involvement of cytochrome b5 in cytochrome P450 CYP6B7 activity towards pyrethroids. Insect Biochem Mol Biol 29, 145-51.

Ranasinghe, C., Hobbs, A., 1999. Induction of cytochrome P450 CYP6B7 and cytochrome b5 mRNAs from Helicoverpa armigera (Hubner) by pyrethroid insecticides in organ culture. Insect Mol Biol 8, 443-447.

Ranasinghe, C., Campbell, B., Hobbs, A.A., 1998. Over-expression of cytochrome P450 CYP6B7 mRNA and pyrethroid resistance in Australian populations of Helicoverpa armigera (Hübner). Pestic Sci 54, 195-202.

Ranasinghe, C., Headlam, M. and Hobbs, A.A. 1997. Induction of the mRNA for CYP6B2, a pyrethroid inducible cytochrome P450, in Helicoverpa armigera (Hubner) by dietary monoterpenes. Arch. Insect Biochem. Physiol., 34, 99-109.

Rand, E.E. du, Smit, S., Beukes, M., Apostolides, Z., Pirk, C.W.W., Nicolson, S.W., 2015. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep 5, 11779. https://doi.org/10.1038/srep11779

Rand, M.D., Lowe, J.A., Mahapatra, C.T., 2012. Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development. Toxicology 300, 75–82. https://doi.org/10.1016/j.tox.2012.06.001

Rane, R V, Clarke, D.F., Pearce, S.L., Zhang, G., Hoffmann, A.A., Oakeshott, J.G., 2019a. Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding Drosophila. Journal of Heredity 110, 80–91. https://doi.org/10.1093/jhered/esy058

Rane, R V, Ghodke, A.B., Hoffmann, A.A., Edwards, O.R., Walsh, T.K., Oakeshott, J.G., 2019b. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Current Opinion in Insect Science 31, 131–138. https://doi.org/10.1016/j.cois.2018.12.008

Rane, R V., Pearce, S.L., Li, F., Coppin, C., Schiffer, M., Shirriffs, J., Sgrò, C.M., Griffin, P.C., Zhang, G., Lee, S.F., Hoffmann, A.A., Oakeshott, J.G., 2019. Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics 20, 52. https://doi.org/10.1186/s12864-018-5413-3

Rane, R.V., Walsh, T.K., Pearce, S.L., Jermiin, L.S., Gordon, K.H., Richards, S., Oakeshott, J.G., 2016. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Current Opinion in Insect Science 13, 70–76. https://doi.org/10.1016/j.cois.2015.12.001

Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M.V., Unger, M.F., Collins, F.H., Feyereisen, R., 2002. Evolution of Supergene Families Associated with Insecticide Resistance. Science 298, 179–181. https://doi.org/10.1126/science.1076781

Ranson, H., Jensen, B., Wang, X., Prapanthadara, L., Hemingway, J., Collins, F.H., 2000. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 9, 499-507.

Ranson, H., Nikou, D., Hutchinson, M., Wang, X., Roth, C.W., Hemingway, J. and Collins, F.H. 2002. Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Mol. Biol., 11, 409-18.

Rasool, A., Joußen, N., Lorenz, S., Ellinger, R., Schneider, B., Khan, S.A., Ashfaq, M., Heckel, D.G., 2014. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan. Insect Biochemistry and Molecular Biology 53, 54–65. https://doi.org/10.1016/j.ibmb.2014.07.006

Ray JW. 1967. The epoxidation of aldrin by house fly microsomes and its inhibition by carbon monoxide. Biochem. Pharmacol. 16: 99-107

Rech, G., Radio, S., Guirao-Rico, S., Aguilera, L., Horvath, V., Green, L., Lindstadt, H., Jamilloux, V., Quesneville, H., Gonzalez, J., 2021. Population-scale long-read sequencing uncovers transposable elements contributing to gene expression variation and associated with adaptive signatures in Drosophila melanogaster (preprint). Evolutionary Biology. https://doi.org/10.1101/2021.10.08.463646

Reed, J. R., Vanderwel, D., Choi, S., Pomonis, J. G., Reitz, R. C., Blomquist, G. J. 1994. Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component Z-9-tricosene and CO2. Proc Natl Acad Sci U S A 91, 10000-4.

Reid, W.R., Thornton, A., Pridgeon, J.W., Becnel, J.J., Tang, F., Estep, A., Clark, G.G., Allan, S., Liu, N., 2014. Transcriptional Analysis of Four Family 4 P450s in a Puerto Rico Strain of Aedes aegypti (Diptera: Culicidae) Compared With an Orlando Strain and Their Possible Functional Roles in Permethrin Resistance. J Med Entomol 51, 605–615. https://doi.org/10.1603/ME13228

Religia, P., Nguyen, N.D., Nong, Q.D., Matsuura, T., Kato, Y., Watanabe, H., 2021. Mutation of the Cytochrome P450 CYP360A8 Gene Increases Sensitivity to Paraquat in Daphnia magna. Enviro Toxic and Chemistry 40, 1279–1288. https://doi.org/10.1002/etc.4970

Rewitz KF, Gilbert LI. 2008. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evol Biol 8: 60

Rewitz, K., O'Connor, M., Gilbert, L., 2007. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochem Mol Biol 37, 741-753.

Rewitz, K., Rybczynski, R., Warren, J., Gilbert, L., 2006. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 36, 188-199.

Rewitz, K., Rybczynski, R., Warren, J., Gilbert, L., 2006. Developmental expression of Manduca shade, the P450 mediating the final step in molting hormone synthesis. Mol Cell Endocrinol 247, 166-174.

Riga, M., Ilias, A., Vontas, J., Douris, V., 2020. Co-Expression of a Homologous Cytochrome P450 Reductase Is Required for In Vivo Validation of the Tetranychus urticae CYP392A16-Based Abamectin Resistance in Drosophila. Insects 11, 829. https://doi.org/10.3390/insects11120829

Riga, M., Myridakis, A., Tsakireli, D., Morou, E., Stephanou, E.G., Nauen, R., Van Leeuwen, T., Douris, V., Vontas, J., 2015. Functional characterization of the Tetranychus urticae CYP392A11, a cytochrome P450 that hydroxylates the METI acaricides cyenopyrafen and fenpyroximate. Insect Biochemistry and Molecular Biology 65, 91–99. https://doi.org/10.1016/j.ibmb.2015.09.004

Riga, M., Tsakireli, D., Ilias, A., Morou, E., Myridakis, A., Stephanou, E.G., Nauen, R., Dermauw, W., Van Leeuwen, T., Paine, M., Vontas, J., 2014. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology 46, 43–53. https://doi.org/10.1016/j.ibmb.2014.01.006

Ringo, J., Jona, G., Rockwell, R., Segal, D. and Cohen, E. 1995. Genetic variation for resistance to chlorpyrifos in Drosophila melanogaster (Diptera: Drosophilidae) infesting grapes in Israel. Journal of Economic Entomology, 88, 1158-63.

Riskallah, M.R., Dauterman, W.C., Hodgson, E., 1986. Nutritional effects on the induction of cytochrome P-450 and glutathione transferase in larvae of the tobacco budworm, Heliothis virescens (F.). Insect Biochemistry 16, 491–499. https://doi.org/10.1016/0020-1790(86)90026-0

Riskallah, M.R., Dauterman, W.C. and Hodgson, E. 1986. Host plant induction of microsomal monooxygenases activity in relation to diazinon metabolism and toxicity in larvae of the tobacco budworm Heliothis virescens (F.). Pestic. Biochem. Physiol., 25, 233-247.

Rittle J, Green MT. 2010. Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330, 933-7.

Riveron, J.M., Ibrahim, S.S., Chanda, E., Mzilahowa, T., Cuamba, N., Irving, H., Barnes, K.G., Ndula, M., Wondji, C.S., 2014. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa. BMC Genomics 15, 817. https://doi.org/10.1186/1471-2164-15-817

Riveron, J.M., Ibrahim, S.S., Mulamba, C., Djouaka, R., Irving, H., Wondji, M.J., Ishak, I.H., Wondji, C.S., 2017. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa. G3 Genes|Genomes|Genetics 7, 1819–1832. https://doi.org/10.1534/g3.117.040147

Riveron, J.M., Irving, H., Ndula, M., Barnes, K.G., Ibrahim, S.S., Paine, M.J.I., Wondji, C.S., 2013. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences 110, 252–257. https://doi.org/10.1073/pnas.1216705110

Roditakis, E., Morou, E., Tsagkarakou, A., Riga, M., Nauen, R., Paine, M., Morin, S., Vontas, J., 2011. Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme: P450- neonicotinoid resistance in Bemisia tabaci. Insect Science 18, 23–29. https://doi.org/10.1111/j.1744-7917.2010.01384.x

Rong, Y., Fujii, T., Ishikawa, Y., 2019a. CYPs in different families are involved in the divergent regio-specific epoxidation of alkenyl sex pheromone precursors in moths. Insect Biochemistry and Molecular Biology 108, 9–15. https://doi.org/10.1016/j.ibmb.2019.03.002

Rong, Y., Fujii, T., Katsuma, S., Yamamoto, M., Ando, T., Ishikawa, Y., 2014. CYP341B14: A cytochrome P450 involved in the specific epoxidation of pheromone precursors in the fall webworm Hyphantria cunea. Insect Biochemistry and Molecular Biology 54, 122–128. https://doi.org/10.1016/j.ibmb.2014.09.009

Rong, Y., Fujii, T., Naka, H., Yamamoto, M., Ishikawa, Y., 2019b. Functional characterization of the epoxidase gene, Li_epo1 (CYP341B14), involved in generation of epoxyalkene pheromones in the mulberry tiger moth Lemyra imparilis. Insect Biochemistry and Molecular Biology 107, 46–52. https://doi.org/10.1016/j.ibmb.2019.02.001

Rongnoparut, P., Boonsuepsakul, S., Chareonviriyaphap, T., Thanomsing, N., 2003. Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. J Vector Ecol 28, 150-158.

Ronis, M.J.J., Hodgson, E., Dauterman, W.C., 1988. Characterization of multiple forms of cytochrome P-450 from an insecticide resistant strain of house fly ( Musca domestica). Pestic Biochem Physiol 32, 74-90.

Rork, A.M., Xu, S., Attygalle, A., Renner, T., 2021. Primary Metabolism co-Opted for Defensive Chemical Production in the Carabid Beetle, Harpalus pensylvanicus. J Chem Ecol 47, 334–349. https://doi.org/10.1007/s10886-021-01253-2

Rose, H.A. 1985. The relationship between feeding specialization and host plants to aldrin epoxidase activities of midgut homogenates in larval Lepidoptera. Ecol. Entomol.,, 455-67.

Rose, R., L., Barbhaiya, M., Roe, C., Rock, E., Hodgson, 1995. Cytochrome P450-Associated Insecticide Resistance and the Development of Biochemical Diagnostic Assays in Heliothis virescens. Pesticide Biochemistry and Physiology 51, 178-191.

Rose, R. L., Goh, D., Thompson, D. M, Verma, K. D., Heckel, D. G., Gahan, L. J., Roe, R. M, Hodgson, E. 1997. Cytochrome P450 CYP9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem Mol Biol 27, 605-15.

Rose, R.L., Gould, F., Levi, P.E. and Hodgson, E. 1991. Differences in cytochrome P450 activities in tobacco budworm larvae as influenced by resistance to host plant allelochemicals and induction. Comp. Biochem. Physiol., 99B, 535-540.

Rout, P., Ravindranath, N., Gaikwad, D., Nanda, S., 2023. Unveiling Nilaparvata lugens Stål Genes Defining Compatible and Incompatible Interactions with Rice through Transcriptome Analysis and Gene Silencing. CIMB 45, 6790–6803. https://doi.org/10.3390/cimb45080429

Roy, A., Palli, S.R., 2018. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics 19, 934. https://doi.org/10.1186/s12864-018-5323-4

Roy, A., Walker, W.B., Vogel, H., Chattington, S., Larsson, M.C., Anderson, P., Heckel, D.G., Schlyter, F., 2016. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology 71, 91–105. https://doi.org/10.1016/j.ibmb.2016.02.006

Ruan, Y., Liu, X., Gong, C., Zhang, Y., Shen, L., Ali, H., Huang, Y., Wang, X., 2021. Cloning and Functional Verification of CYP408A3 and CYP6CS3 Related to Chlorpyrifos Resistance in the Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Biology 10, 795. https://doi.org/10.3390/biology10080795

Rupasinghe SG, Wen Z, Chiu T-L, Schuler MA 2007. Helicoverpa zea CYP6B8 and CYP321A1: Different molecular solutions to the problem of metabolizing plant toxins and insecticides. Protein Engineering Design and Selection 20:615–624

Ruther, J., Bruckmann, A., Hofferberth, J., 2021. Pheromone biosynthesis in Nasonia, in: Insect Pheromone Biochemistry and Molecular Biology. Elsevier, pp. 237–267. https://doi.org/10.1016/B978-0-12-819628-1.00008-0

Sabio, M.C., Alzogaray, R., Fanara, J.J., 2024. Genetic architecture of the toxicological response to eucalyptol and citronellal in Drosophila melanogaster. Pesticide Biochemistry and Physiology 202, 105938. https://doi.org/10.1016/j.pestbp.2024.105938

Sabourault, C., Guzov, V.M., Koener, J.F., Claudianos, C., Plapp, F.W., Feyereisen, R., 2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdαE7 ) gene in resistant house flies. Insect Molecular Biology 10, 609-618. https://doi.org/10.1046/j.0962-1075.2001.00303.x.

Saito, J., Kimura, R., Kaieda, Y., Nishida, R., Ono, H., 2016. Characterization of candidate intermediates in the Black Box of the ecdysone biosynthetic pathway in Drosophila melanogaster: Evaluation of molting activities on ecdysteroid-defective larvae. Journal of Insect Physiology 93–94, 94–104. https://doi.org/10.1016/j.jinsphys.2016.09.012

Salces-Ortiz, J., Vargas-Chavez, C., Guio, L., Rech, G.E., González, J., 2020. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Phil. Trans. R. Soc. B 375, 20190341. https://doi.org/10.1098/rstb.2019.0341

Samantsidis, G.-R., Panteleri, R., Denecke, S., Kounadi, S., Christou, I., Nauen, R., Douris, V., Vontas, J., 2020. ‘What I cannot create, I do not understand’: functionally validated synergism of metabolic and target site insecticide resistance. Proc. R. Soc. B. 287, 20200838. https://doi.org/10.1098/rspb.2020.0838

Sandlund, L., Kongshaug, H., Horsberg, T.E., Male, R., Nilsen, F., Dalvin, S., 2018. Identification and characterisation of the ecdysone biosynthetic genes neverland, disembodied and shade in the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae). PLoS ONE 13, e0191995. https://doi.org/10.1371/journal.pone.0191995

Sandstrom P, Ginzel M, Bearfield J, Welch W, Blomquist G, Tittiger C. 2008. Myrcene hydroxylases do not determine enantiomeric composition of pheromonal ipsdienol in Ips spp. J Chem Ecol 34: 1584-1592

Sandstrom P, Welch W, Blomquist G, Tittiger C. 2006. Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol. Insect Biochem Mol Biol 36: 835-845

Saner, C., Weibel, B, Wurgler, F. E., Sengstag, C. 1996. Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae. Environ Mol Mutagen 27, 46-58.

Sarapusit, S., Lertkiatmongkol, P., Duangkaew, P., Rongnoparut, P., 2013. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis. IJMS 14, 1788–1801. https://doi.org/10.3390/ijms14011788

Sarapusit S, Pethuan S, Rongnoparut P. 2010. Mosquito NADPH-cytochrome P450 oxidoreductase: kinetics and role of phenylalanine amino acid substitutions at leu86 and leu219 in CYP6AA3-mediated deltamethrin metabolism. Arch Insect Biochem Physiol 73, 232-44.

Sarapusit, S., Xia, C., Misra, I., Rongnoparut, P., Kim, J. J. 2008. NADPH-cytochrome P450 oxidoreductase from the mosquito Anopheles minimus: kinetic studies and the influence of Leu86 and Leu219 on cofactor binding and protein stability. Arch Biochem Biophys 477, 53-9.

Sasabe, M., Wen, Z., Berenbaum, M. R., and Schuler, M. A. 2004. Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene 338, 163-75.

Scanlan, J.L., Gledhill-Smith, R.S., Battlay, P., Robin, C., 2020. Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the ‘detoxification-by-phosphorylation’ enzymes of insects. Insect Biochemistry and Molecular Biology 123, 103429. https://doi.org/10.1016/j.ibmb.2020.103429

Schama, R., Pedrini, N., Juárez, M.P., Nelson, D.R., Torres, A.Q., Valle, D., Mesquita, R.D., 2016. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance. Insect Biochemistry and Molecular Biology 69, 91–104. https://doi.org/10.1016/j.ibmb.2015.06.005

Scharf, M.E., Neal, J.J., Marcus, C.B. and Bennett, G.W. 1998 Cytochrome P450 purification and immunological detection in an insecticide resistant strain of German cockroach (Blattella germanica, L.). Insect Biochem. Mol. Biol., 28, 1-9.

Scharf, M.E., Lee, C.Y., Neal, J.J. and Bennett, G.W. 1999. Cytochrome P450 MA expression in insecticide-resistant German cockroaches (Dictyoptera: Blattellidae). J. Econ. Entomol., 92, 788-93.

Scharf, M.E., Parimi, S., Meinke, L.J., Chandler, L.D. and Siegfried, B.D. 2001. Expression and induction of three family 4 cytochrome P450 (CYP4)* genes identified from insecticide-resistant and susceptible western corn rootworms, Diabrotica virgifera virgifera. Insect Mol. Biol., 10, 139-46.

Scharf, M E., Scharf, D. W., Bennett, G. W., Pittendrigh, B R. 2004. Catalytic activity and expression of two flavin-containing monooxygenases from Drosophila melanogaster. Arch Insect Biochem Physiol 57, 28-39.

Scharf, M., Siegfried, B., Meinke, L., Wright, R.J., Chandler, L., 2000. Cytochrome P450-mediated N-demethylation activity and induction in insecticide-resistant and susceptible western corn rootworm populations (Coleoptera: Chrysomelidae). Pestic Biochem Physiol 67, 137-143.

Schellens, S., Lenaerts, C., Pérez Baca, M. del R., Cools, D., Peeters, P., Marchal, E., Vanden Broeck, J., 2022. Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. IJMS 23, 9232. https://doi.org/10.3390/ijms23169232

Schenkman JB, Jansson I. 2003. The many roles of cytochrome b5. Pharmacol. Ther. 97, 139-152.

Schmidt, J.M., Battlay, P., Gledhill-Smith, R.S., Good, R.T., Lumb, C., Fournier-Level, A., Robin, C., 2017. Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel. Genetics 207, 1181–1193. https://doi.org/10.1534/genetics.117.300310

Schmidt, J.M., Good, R.T., Appleton, B., Sherrard, J., Raymant, G.C., Bogwitz, M.R., Martin, J., Daborn, P.J., Goddard, M.E., Batterham, P., Robin, C., 2010. Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus. PLoS Genet 6, e1000998. https://doi.org/10.1371/journal.pgen.1000998

Schonbrod, R.D., Khan, M.A.Q., Terriere, L.C. and Plapp, F.W., Jr. 1968. Microsomal oxidases in the house fly: a survey of fourteen strains. Life Sci, 7, 681-688

Schrag, M L., Wienkers, L. C. 2000. Topological alteration of the CYP3A4 active site by the divalent cation Mg2+. Drug Metabolism and Disposition 28, 1198-1201.

Schuler, M.A., 2011. P450s in plant–insect interactions. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814, 36–45. https://doi.org/10.1016/j.bbapap.2010.09.012

Schuler, M.A., Berenbaum, M.R., 2013. Structure and Function of Cytochrome P450S in Insect Adaptation to Natural and Synthetic Toxins: Insights Gained from Molecular Modeling. J Chem Ecol 39, 1232–1245. https://doi.org/10.1007/s10886-013-0335-7

Schumann, I., Kenny, N., Hui, J., Hering, L., Mayer, G., 2018. Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa. R. Soc. open sci. 5, 180888. https://doi.org/10.1098/rsos.180888

Schweizer, F., Heidel-Fischer, H., Vogel, H., Reymond, P., 2017. Arabidopsis glucosinolates trigger a contrasting transcriptomic response in a generalist and a specialist herbivore. Insect Biochemistry and Molecular Biology 85, 21–31. https://doi.org/10.1016/j.ibmb.2017.04.004

Schwentner M, Combosch DJ, Pakes Nelson J, Giribet G. 2017. A Phylogenomic Solution to the Origin of Insects by Resolving Crustacean-Hexapod Relationships. Curr Biol 27: 1818-1824.e1815

Scott, J.A., Collins, F.H. and Feyereisen, R. 1994. Diversity of cytochrome P450 genes in the mosquito, Anopheles albimanus. Biochem Biophys Res Commun, 205, 1452-9. https://doi.org/10.1006/bbrc.1994.2828

Scott, J., 1996. Inhibitors of CYP6D1 in house fly microsomes. Insect Biochem Mol Biol 26, 645-649.

Scott, J.G., 1999. Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology 29, 757–777. https://doi.org/10.1016/S0965-1748(99)00038-7

Scott, J.G., Foroozesh, M., Hopkins, N.E., Alefantis, T.G. and Alworth, W.L. 2000. Inhibition of cytochrome P450 6D1 by alkynylarenes, methylenedioxyarenes, and other subsituted aromatics. Pestic. Biochem. Physiol., 67, 63-71.

Scott, J.G. and Lee, S.S. 1993a. Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in the insecticide resistant LPR strain of house fly, Musca domestica L. Insect Biochem. Mol. Biol., 23, 729-38.

Scott, J.G. and Lee, S.S. 1993b. Purification and characterization of a cytochrome P-450 from insecticide susceptible and resistant strains of housefly, Musca domestica L., before and after phenobarbital exposure. Arch. Insect Biochem. Physiol., 24, 1-19.

Scott, J., Liu, N., Wen, Z., 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121, 147-155.

Scott, J.G., Foroozesh, M., Hopkins, N.E., Alefantis, T.G. and Alworth, W.L. 2000. Inhibition of cytochrome P450 6D1 by alkynylarenes, methylenedioxyarenes, and other subsituted aromatics. Pestic. Biochem. Physiol., 67, 63-71.

Scott, J.G., Liu, N., Wen, Z., Smith, F.F., Kasai, S., Horak, C.E., 1999. House-fly cytochrome P450 CYP6D1: 5′ flanking sequences and comparison of alleles. Gene 226, 347–353. https://doi.org/10.1016/S0378-1119(98)00545-9

Scott, J.G., Sridhar, P. and Liu, N. 1996. Adult specific expression and induction of cytochrome P450lpr in house flies. Arch. Insect Biochem. Physiol., 31, 313-23.

Sehlmeyer, S., Wang, L., Langel, D., Heckel, D. G., Mohagheghi, H., Petschenka, G., Ober, D. 2010. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids lepidoptera. PLoS One 5, e10435.

Seifert, J. and Scott, J.G. 2002. The CYP6D1v1 allele is associated with pyrethroid resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol., 72, 40-44.

Sellamuthu, G., Naseer, A., Hradecký, J., Chakraborty, A., Synek, J., Modlinger, R., Roy, A., 2024. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). Insect Biochemistry and Molecular Biology 165, 104061. https://doi.org/10.1016/j.ibmb.2023.104061

Semmelmann, F., Kabeya, N., Malcicka, M., Bruckmann, A., Broschwitz, B., Straub, K., Merkl, R., Monroig, O., Sterner, R., Ruther, J., Ellers, J., 2019. Functional characterisation of two Δ12-desaturases demonstrates targeted production of linoleic acid as pheromone precursor in Nasonia. Journal of Experimental Biology jeb.201038. https://doi.org/10.1242/jeb.201038

Seong, K.M., Coates, B.S., Berenbaum, M.R., Clark, J.M., Pittendrigh, B.R., 2018a. Comparative CYP-omic analysis between the DDT-susceptible and -resistant Drosophila melanogaster strains 91-C and 91-R: Structural and functional variations of P450s between Drosophila strains. Pest. Manag. Sci. 74, 2530–2543. https://doi.org/10.1002/ps.4936

Seong, K.M., Coates, B.S., Kim, D., Hansen, A.K., Pittendrigh, B.R., 2018b. Differentially expressed microRNAs associated with changes of transcript levels in detoxification pathways and DDT-resistance in the Drosophila melanogaster strain 91-R. PLoS ONE 13, e0196518. https://doi.org/10.1371/journal.pone.0196518

Seong, K.M., Coates, B.S., Pittendrigh, B.R., 2020a. Post-transcriptional modulation of cytochrome P450s, Cyp6g1 and Cyp6g2, by miR-310s cluster is associated with DDT-resistant Drosophila melanogaster strain 91-R. Sci Rep 10, 14394. https://doi.org/10.1038/s41598-020-71250-0

Seong, K.M., Coates, B.S., Pittendrigh, B.R., 2019a. Impacts of Sub-lethal DDT Exposures on microRNA and Putative Target Transcript Expression in DDT Resistant and Susceptible Drosophila melanogaster Strains. Front. Genet. 10, 45. https://doi.org/10.3389/fgene.2019.00045

Seong, K.M., Coates, B.S., Pittendrigh, B.R., 2019b. Cytochrome P450s Cyp4p1 and Cyp4p2 associated with the DDT tolerance in the Drosophila melanogaster strain 91-R. Pesticide Biochemistry and Physiology 159, 136–143. https://doi.org/10.1016/j.pestbp.2019.06.008

Seong, K.M., Kim, Y., Kim, D., Pittendrigh, B.R., Kim, Y.H., 2020b. Identification of transcriptional responsive genes to acetic acid, ethanol, and 2-phenylethanol exposure in Drosophila melanogaster. Pesticide Biochemistry and Physiology 165, 104552. https://doi.org/10.1016/j.pestbp.2020.02.018

Seppey, M., Ioannidis, P., Emerson, B.C., Pitteloud, C., Robinson-Rechavi, M., Roux, J., Escalona, H.E., McKenna, D.D., Misof, B., Shin, S., Zhou, X., Waterhouse, R.M., Alvarez, N., 2019. Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles. Genome Biol 20, 98. https://doi.org/10.1186/s13059-019-1704-5

Sezutsu, H., Le Goff, G., Feyereisen, R., 2013. Origins of P450 diversity. Phil. Trans. R. Soc. B 368, 20120428. https://doi.org/10.1098/rstb.2012.0428

Shah, S., Yarrow, C., Dunning, R., Cheek, B., Vass, S., Windass, J., Hadfield, S., 2012. Insecticide detoxification indicator strains as tools for enhancing chemical discovery screens. Pest Management Science 68, 38–48. https://doi.org/10.1002/ps.2218

Shahzad, M.F., Idrees, A., Afzal, A., Iqbal, J., Qadir, Z.A., Khan, A.A., Ullah, A., Li, J., 2022. RNAi-Mediated Silencing of Putative Halloween Gene Phantom Affects the Performance of Rice Striped Stem Borer, Chilo suppressalis Insects 13, 731. https://doi.org/10.3390/ insects13080731

Shangguan, C., Kuang, Y., Gao, L., Zhu, B., Chen, X.D., Yu, X., 2023. Antennae-enriched expression of candidate odorant degrading enzyme genes in the turnip aphid, Lipaphis erysimi. Front. Physiol. 14, 1228570. https://doi.org/10.3389/fphys.2023.1228570

Sharath C. G., Asokan, R., Manamohan, M., Sita, T., 2016. Cytochrome P450 Isoforms Transcriptional, Larval Growth and Development Responses to Host Allelochemicals in the Generalist Herbivore, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae). Current Science 111, 901. https://doi.org/10.18520/cs/v111/i5/901-906

Shelomi, M., 2022. Cytochrome P450 Genes Expressed in Phasmatodea Midguts. Insects 13, 873. https://doi.org/10.3390/insects13100873

Shen, B., Dong, H.Q., Tian, H.S., Ma, L., Li, X.L., Wu, G.L. and Zhu, C.L. 2003. Cytochrome P450 genes expressed in the deltamethrin-susceptible and -resistant strains of Culex pipiens pallens. Pestic. Biochem. Physiol., 75, 19-26.

Shen, B., Zhao, D., Qiao, C., Lan, W., 2004. Cloning of CYP9G2 from the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). DNA Seq 15, 228-233.

Shen GM, Ou SY, Li CZ, Feng KY, Niu JZ, Adang MJ, He L. 2022. Transcription factors CncC and Maf connect the molecular network between pesticide resistance and resurgence of pest mites. Insect Sci.29, 801-816. https://doi.org/10.1111/1744-7917.12970

Shen, G.-M., Song, C.-G., Ao, Y.-Q.-Y., Xiao, Y.-H., Zhang, Y.-J., Pan, Y., He, L., 2017. Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus: RNAi of CYP392A4 through transgenic cotton. Insect Science 24, 559–568. https://doi.org/10.1111/1744-7917.12346

Sheppard, D.G. and Joyce, J.A. 1998. Increased susceptibility of pyrethroid-resistant horn flies (Diptera: Muscidae) to chlorfenapyr. J. Econ. Entomol., 91, 398-400.

Shi, L., Li, W., Dong, Y., Shi, Y., Zhou, Y., Liao, X., 2021. NADPH-cytochrome P450 reductase potentially involved in indoxacarb resistance in Spodoptera litura. Pesticide Biochemistry and Physiology 173, 104775. https://doi.org/10.1016/j.pestbp.2021.104775

Shi, L., Wang, M., Zhang, Y., Shen, G., Di, H., Wang, Y., He, L., 2017. The expression of P450 genes mediating fenpropathrin resistance is regulated by CncC and Maf in Tetranychus cinnabarinus (Boisduval). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 198, 28–36. https://doi.org/10.1016/j.cbpc.2017.05.002

Shi, L., Xu, Z., Shen, G., Song, C., Wang, Y., Peng, J., Zhang, J., He, L., 2015a. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology 119, 33–41. https://doi.org/10.1016/j.pestbp.2015.02.009

Shi, L., Zhang, J., Shen, G., Xu, Z., Wei, P., Zhang, Y., Xu, Q., He, L., 2015b. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval). Sci Rep 5, 15581. https://doi.org/10.1038/srep15581

Shi, L., Zhang, J., Shen, G., Xu, Z., Xu, Q., He, L., 2016. Collaborative contribution of six cytochrome P450 monooxygenase genes to fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval): Contribution of six P450 genes to resistance. Insect Mol Biol 25, 653–665. https://doi.org/10.1111/imb.12251

Shi, W., Sun, J., Xu, B., Li, H., 2013. Molecular Characterization and Oxidative Stress Response of a Cytochrome P450 Gene (CYP4G11) from Apis cerana cerana. Z. Naturforsch. 68 c, 509 – 521

Shi Y, He L, Ding W, Huang H, He H, Xue J, Gao Q, Zhang Z, Li Y, Qiu L. 2023. Function analysis of CYP321A9 from Spodoptera frugiperda (Lepidoptera: Noctuidae) associated with emamectin benzoate, and a novel insecticide, cyproflanilide detoxification. J Econ Entomol.31:toad168. https://doi.org/10.1093/jee/toad168

Shi, Y., Jiang, Q., Yang, Y., Feyereisen, R., Wu, Y., 2021. Pyrethroid metabolism by eleven Helicoverpa armigera P450s from the CYP6B and CYP9A subfamilies. Insect Biochemistry and Molecular Biology 135, 103597. https://doi.org/10.1016/j.ibmb.2021.103597

Shi, Y., Liu, Q., Lu, W., Yuan, J., Yang, Y., Oakeshott, J., Wu, Y., 2023. Divergent amplifications of CYP9A cytochrome P450 genes provide two noctuid pests with differential protection against xenobiotics. Proc. Natl. Acad. Sci. U.S.A. 120, e2308685120. https://doi.org/10.1073/pnas.2308685120

Shi, Y., O’Reilly, A.O., Sun, S., Qu, Q., Yang, Y., Wu, Y., 2020. Roles of the variable P450 substrate recognition sites SRS1 and SRS6 in esfenvalerate metabolism by CYP6AE subfamily enzymes in Helicoverpa armigera. Insect Biochemistry and Molecular Biology 127, 103486. https://doi.org/10.1016/j.ibmb.2020.103486

Shi, Y., Qu, Q., Wang, C., He, Y., Yang, Y., Wu, Y., 2022a. Involvement of CYP2 and mitochondrial clan P450s of Helicoverpa armigera in xenobiotic metabolism. Insect Biochemistry and Molecular Biology 140, 103696. https://doi.org/10.1016/j.ibmb.2021.103696

Shi, Y., Su, T., Yu, Z., Mei, W., Wu, Y., Yang, Y., 2024. F116I mutation in CYP9A25 associated with resistance to emamectin benzoate in Spodoptera litura. Pest Management Science ps.8427. https://doi.org/10.1002/ps.8427

Shi, Y., Sun, S., Zhang, Y., He, Y., Du, M., ÓReilly, A.O., Wu, S., Yang, Y., Wu, Y., 2022b. Single amino acid variations drive functional divergence of cytochrome P450s in Helicoverpa species. Insect Biochemistry and Molecular Biology 146, 103796. https://doi.org/10.1016/j.ibmb.2022.103796

Shi, Y., Wang, H., Liu, Z., Wu, S., Yang, Y., Feyereisen, R., Heckel, D.G., Wu, Y., 2018. Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism. Insect Biochemistry and Molecular Biology 93, 79–91. https://doi.org/10.1016/j.ibmb.2017.12.006

Shimell, M., O’Connor, M.B., 2022. The cytochrome P450 Cyp6t3 is not required for ecdysone biosynthesis in Drosophila melanogaster. microPublication Biology. 10.17912/micropub.biology.000611

Shimizu, N., Sakata, D., Schmelz, E.A., Mori, N., Kuwahara, Y., 2017. Biosynthetic pathway of aliphatic formates via a Baeyer–Villiger oxidation in mechanism present in astigmatid mites. Proc Natl Acad Sci USA 114, 2616–2621. https://doi.org/10.1073/pnas.1612611114

Shishido, T., Usui, K., Fukami, JI. 1972. Oxidative metabolism of diazinon by microsomes from rat liver and cockroach fat body. Pest. Biochem. Physiol. 2, 27-38.

Shono, T., Kasai, S., Kamiya, E., Kono, Y. and Scott, J.G. 2002. Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pestic. Biochem. Physiol., 73, 27-36.

Shpak, M., Ghanavi, H.R., Lange, J.D., Pool, J.E., Stensmyr, M.C., 2023. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol 21, e3002333. https://doi.org/10.1371/journal.pbio.3002333

Shu, H., Lin, Y., Zhang, Z., Qiu, L., Ding, W., Gao, Q., Xue, J., Li, Y., He, H., 2023. The transcriptomic profile of Spodoptera frugiperda differs in response to a novel insecticide, cyproflanilide, compared to chlorantraniliprole and avermectin. BMC Genomics 24, 3. https://doi.org/10.1186/s12864-022-09095-2

Sigle, L.T., McGraw, E.A., 2019. Expanding the canon: Non-classical mosquito genes at the interface of arboviral infection. Insect Biochemistry and Molecular Biology 109, 72–80. https://doi.org/10.1016/j.ibmb.2019.04.004

Silva-Brandão, K.L., Horikoshi, R.J., Bernardi, D., Omoto, C., Figueira, A., Brandão, M.M., 2017. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genomics 18, 792. https://doi.org/10.1186/s12864-017-4170-z

Sin, Y.W., Kenny, N.J., Qu, Z., Chan, K.W., Chan, K.W.S., Cheong, S.P.S., Leung, R.W.T., Chan, T.F., Bendena, W.G., Chu, K.H., Tobe, S.S., Hui, J.H.L., 2015. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. General and Comparative Endocrinology 214, 167–176. https://doi.org/10.1016/j.ygcen.2014.07.018

Singer SC, Lee RF 1977 Mixed function oxygenase activity in blue crab, Callinectes sapidus: tissue distribution and correlation with changes during molting and development. Biol. Bull. 153: 377-386.

Singh, K.S., Troczka, B.J., Duarte, A., Balabanidou, V., Trissi, N., Carabajal Paladino, L.Z., Nguyen, P., Zimmer, C.T., Papapostolou, K.M., Randall, E., Lueke, B., Marec, F., Mazzoni, E., Williamson, M.S., Hayward, A., Nauen, R., Vontas, J., Bass, C., 2020. The genetic architecture of a host shift: An adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. Sci. Adv. 6, eaba1070. https://doi.org/10.1126/sciadv.aba1070

Smith, F. F., and Scott, J. G. 1997. Functional expression of house fly Musca domestica cytochrome P450 CYP6D1 in yeast Saccharomyces cerevisiae. Insect Biochem Mol Biol 27, 999-1006.

Smith, L.B., Sears, C., Sun, H., Mertz, R.W., Kasai, S., Scott, J.G., 2019. CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr. Pesticide Biochemistry and Physiology 160, 119–126. https://doi.org/10.1016/j.pestbp.2019.07.011

Smith, L.B., Tyagi, R., Kasai, S., Scott, J.G., 2018. CYP-mediated permethrin resistance in Aedes aegypti and evidence for trans-regulation. PLoS Negl Trop Dis 12, e0006933. https://doi.org/10.1371/journal.pntd.0006933

Smith, S., Mitchell, M., 1986. ecdysone 20-monooxygenase systems in a larval and an adult dipteran. Insect Biochem 16, 49-55.

Smith, S.L., Bollenbacher, W.E., Cooper, D.Y., Schleyer, H., Wielgus, J.J. and Gilbert, L.I. 1979. Ecdysone 20-monooxygenase: characterization of an insect cytochrome P-450 dependent steroid hydroxylase. Mol. Cell. Endocrinol., 15, 111-133.

Snoeck, S., Greenhalgh, R., Tirry, L., Clark, R.M., Van Leeuwen, T., Dermauw, W., 2017. The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Sci Rep 7, 13440. https://doi.org/10.1038/s41598-017-13397-x

Snoeck, S., Kurlovs, A.H., Bajda, S., Feyereisen, R., Greenhalgh, R., Villacis-Perez, E., Kosterlitz, O., Dermauw, W., Clark, R.M., Van Leeuwen, T., 2019. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochemistry and Molecular Biology 110, 19–33. https://doi.org/10.1016/j.ibmb.2019.04.011

Snoeck, S., Wybouw, N., Van Leeuwen, T., Dermauw, W., 2018. Transcriptomic Plasticity in the Arthropod Generalist Tetranychus urticae Upon Long-Term Acclimation to Different Host Plants. G3 g3.200585.2018. https://doi.org/10.1534/g3.118.200585

Snyder, M.J., 1998. Effect of plant diet on detoxification enzyme activities of two grasshoppers, melanoplus differentialis and Taeniopoda eques. J. Chem. Ecol. 24, 2151-2165.

Snyder, M.J. and Glendinning, J.I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J Comp Physiol [A], 179, 255-61

Snyder MJ, Hsu EL, Feyereisen R. 1993. Induction of cytochrome P450 activities by nicotine in the tobacco hornworm, Manduca sexta. J Chem Ecol 19: 2903-2916. https://doi.org/10.1007/BF00980591

Snyder MJ, Scott JA, Andersen JF, Feyereisen R. 1996. Sampling P450 diversity by cloning polymerase chain reaction products obtained with degenerate primers. Methods Enzymol. 272:304-12. https://doi.org/10.1016/s0076-6879(96)72036-0

Snyder MJ, Stevens JL, Andersen JF, Feyereisen R. 1995. Expression of cytochrome P450 genes of the CYP4 family in midgut and fat body of the tobacco hornworm, Manduca sexta. Arch Biochem Biophys 321: 13-20. https://doi.org/10.1006/abbi.1995.1362

Son, J.-S., Lee, S., Hwang, S., Jeong, J., Jang, S., Gong, J., Choi, J.Y., Je, Y.H., Ryu, C.-M., 2024. Enzymatic oxidation of polyethylene by Galleria mellonella intestinal cytochrome P450s. Journal of Hazardous Materials 480, 136264. https://doi.org/10.1016/j.jhazmat.2024.13626 [ “13G08” is CYP6AB184; “GP04” is CYP6B89]

Song, M., Delaplain, P., Nguyen, T.T., Liu, X., Wickenberg, L., Jeffrey, C., Blomquist, G.J., Tittiger, C., 2014. exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae. Insect Biochemistry and Molecular Biology 53, 73–80. https://doi.org/10.1016/j.ibmb.2014.08.002

Song, M., Kim, A.C., Gorzalski, A.J., MacLean, M., Young, S., Ginzel, M.D., Blomquist, G.J., Tittiger, C., 2013. Functional characterization of myrcene hydroxylases from two geographically distinct Ips pini populations. Insect Biochemistry and Molecular Biology 43, 336–343. https://doi.org/10.1016/j.ibmb.2013.01.003

Song, S.V., Downes, S., Parker, T., Oakeshott, J.G., Robin, C., 2015. High nucleotide diversity and limited linkage disequilibrium in Helicoverpa armigera facilitates the detection of a selective sweep. Heredity 115, 460–470. https://doi.org/10.1038/hdy.2015.53

Soumalia Issa, M., Johnson, R., Park, Y., Zhu, K.Y., 2024. Functional Roles of Five Cytochrome P450 Transcripts in the Susceptibility of the Yellow Fever Mosquito to Pyrethroids Revealed by RNAi Coupled With Insecticide Bioassay. Arch Insect Biochem Physiol 117, e70013. https://doi.org/10.1002/arch.70013

Soumoff, C., Skinner, D.M., 1988. Ecdysone 20-monooxygenase activity in land crabs. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 91, 139–144. https://doi.org/10.1016/0742-8413(88)90179-X

Sparks, M., Rhoades, J., Nelson, D., Kuhar, D., Lancaster, J., Lehner, B., Tholl, D., Weber, D., Gundersen-Rindal, D., 2017. A Transcriptome Survey Spanning Life Stages and Sexes of the Harlequin Bug, Murgantia histrionica. Insects 8, 55. https://doi.org/10.3390/insects8020055

Sparks, T.C., DeBoer, G.J., Wang, N.X., Hasler, J.M., Loso, M.R., Watson, G.B., 2012. Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophila melanogaster monooxygenase CYP6G1. Pesticide Biochemistry and Physiology 103, 159–165. https://doi.org/10.1016/j.pestbp.2012.05.006

Sparks TC, Storer N, Porter A, Slater R, Nauen R. 2021. Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag Sci. 77:2609-2619. https://doi.org/10.1002/ps.6254

Spencer CS, Yunta C, de Lima GPG, Hemmings K, Lian LY, Lycett G, Paine MJI.2018. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction. Insect Biochem Mol Biol. 98:25-33. https://doi.org/10.1016/j.ibmb.2018.04.010

Spiegelman, V., Fuchs, S., Belitsky, G., 1997. The expression of insecticide resistance-related cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster. Biochem Biophys Res Commun 232, 304-307.

Srivatsan, J., Kuwahara, T., Agosin, M., 1987. The effect of alpha-ecdysone and phenobarbital on the alpha-ecdysone 20-monooxygenase of house fly larva. Biochemical and Biophysical Research Communications 148, 1075–1080. https://doi.org/10.1016/S0006-291X(87)80241-3

Steele, L.D., Muir, W.M., Seong, K.M., Valero, M.C., Rangesa, M., Sun, W., Clark, J.M., Coates, B., Pittendrigh, B.R., 2014. Genome-Wide Sequencing and an Open Reading Frame Analysis of Dichlorodiphenyltrichloroethane (DDT) Susceptible (91-C) and Resistant (91-R) Drosophila melanogaster Laboratory Populations. PLoS ONE 9, e98584. https://doi.org/10.1371/journal.pone.0098584

Stevens JL, Snyder MJ, Koener JF, Feyereisen R. 2000. Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem Mol Biol 30: 559-568 https://doi.org/10.1016/s0965-1748(00)00024-2

Stevenson, B J., Bibby, J., Pignatelli, P., Muangnoicharoen, S., O'Neill, P. M, Lian, L. Y., Muller, P., Nikou, D., Steven, A, Hemingway, J., Sutcliffe, M J., Paine, M J. 2011. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metablizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 41,492-502

Stevenson, B.J., Pignatelli, P., Nikou, D., Paine, M.J.I., 2012. Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance. PLoS Negl Trop Dis 6, e1595. https://doi.org/10.1371/journal.pntd.0001595

Strode, C., Steen, K., Ortelli, F., Ranson, H., 2006. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Mol Biol 15, 523-530.

Strode, C., Wondji, C., David, J., Hawkes, N., Lumjuan, N., Nelson, D., Drane, D., Karunaratne, S., Hemingway, J., Black, W., Ranson, H., 2008. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 38, 113-123.

Strycharz, J.P., Lao, A., Li, H., Qiu, X., Lee, S.H., Sun, W., Yoon, K.S., Doherty, J.J., Pittendrigh, B.R., Clark, J.M., 2013. Resistance in the highly DDT-resistant 91-R strain of Drosophila melanogaster involves decreased penetration, increased metabolism, and direct excretion. Pesticide Biochemistry and Physiology 107, 207–217. https://doi.org/10.1016/j.pestbp.2013.06.010

Stump, A.D., Jablonski, S.E., Bouton, L., Wilder, J.A., 2011. Distribution and Mechanism of α-Amanitin Tolerance in Mycophagous Drosophila (Diptera: Drosophilidae). env. entom. 40, 1604–1612. https://doi.org/10.1603/EN11136

Sugahara, R., Tanaka, S., Shiotsuki, T., 2017. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. Developmental Biology 429, 71–80. https://doi.org/10.1016/j.ydbio.2017.07.007

Sun, D., Zeng, J., Xu, Q., Wang, M., Shentu, X., 2024. Two critical detoxification enzyme genes, NlCYP301B1 and NlGSTm2 confer pymetrozine resistance in the brown planthopper (BPH), Nilaparvata lugens Stål. Pesticide Biochemistry and Physiology 206, 106199. https://doi.org/10.1016/j.pestbp.2024.106199

Sun, H., Yang, B., Zhang, Y., Liu, Z., 2017. Metabolic resistance in Nilaparvata lugens to etofenprox, a non-ester pyrethroid insecticide. Pesticide Biochemistry and Physiology 136, 23–28. https://doi.org/10.1016/j.pestbp.2016.08.009

Sun, L., Gao, Y., Zhang, Q., Lv, Y., & Cao, C. 2022. Resistance to Lymantria dispar larvae in transgenic poplar plants expressing CYP6B53 double-stranded RNA. Annals of Applied Biology, 181,40–47. https://doi.org/10.1111/aab.12752

Sun, L., Liu, P., Zhang, C., Du, H., Wang, Z., Moural, T.W., Zhu, F., Cao, C., 2019. Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria dispar and Drosophila melanogaster. Front. Physiol. 10, 766. https://doi.org/10.3389/fphys.2019.00766

Sun, L., Schemerhorn, B., Jannasch, A., Walters, K.R., Adamec, J., Muir, W.M., Pittendrigh, B.R., 2011. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and -resistant Drosophila melanogaster strains in response to DDT and oxidative stress. Pesticide Biochemistry and Physiology 100, 7–15. https://doi.org/10.1016/j.pestbp.2011.01.009

Sun, Q.-K., Meng, Q.-W., Xu, Q.-Y., Deng, P., Guo, W.-C., Li, G.-Q., 2017. Leptinotarsa cap ‘n’ collar isoform C/Kelch-like ECH associated protein 1 signaling is critical for the regulation of ecdysteroidogenesis in the larvae. Insect Biochemistry and Molecular Biology 85, 1–10. https://doi.org/10.1016/j.ibmb.2017.04.001

Sun, W., Margam, V., Sun, L., Buczkowski, G., Bennett, G., Schemerhorn, B., Muir, W., Pittendrigh, B., 2006. Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster. Insect Mol Biol 15, 455-464.

Sun, W., Valero, M.C., Seong, K.M., Steele, L.D., Huang, I.-T., Lee, C.-H., Clark, J.M., Qiu, X., Pittendrigh, B.R., 2015. A Glycine Insertion in the Estrogen-Related Receptor (ERR) Is Associated with Enhanced Expression of Three Cytochrome P450 Genes in Transgenic Drosophila melanogaster. PLoS ONE 10, e0118779. https://doi.org/10.1371/journal.pone.0118779

Sun, X., Gong, Y., Ali, S., Hou, M., 2018. Mechanisms of resistance to thiamethoxam and dinotefuran compared to imidacloprid in the brown planthopper: Roles of cytochrome P450 monooxygenase and a P450 gene CYP6ER1. Pesticide Biochemistry and Physiology 150, 17–26. https://doi.org/10.1016/j.pestbp.2018.06.014

Sun, X.H., Xu, N., Xu, Y., Zhou, D., Sun, Y., Wang, W.J., Ma, L., Zhu, C.L., Shen, B., 2019. A novel miRNA, miR-13664, targets CpCYP314A1 to regulate deltamethrin resistance in Culex pipiens pallens. Parasitology 146, 197–205. https://doi.org/10.1017/S0031182018001002

Sun, Y.P., Johnson, E.R., 1972. Quasi-synergism and penetration of insecticides. Journal of Economic Entomology 65, 349-353.

Sun, Z., Liu, Y., Xu, H., Yan, C., 2022. Genome-Wide Identification of P450 Genes in Chironomid Propsilocerus akamusi Reveals Candidate Genes Involved in Gut Microbiota-Mediated Detoxification of Chlorpyrifos. Insects 13, 765. https://doi.org/10.3390/ insects13090765

Sun, Z., Shi, Q., Li, Q., Wang, R., Xu, C., Wang, H., Ran, C., Song, Y., Zeng, R., 2019. Identification of a cytochrome P450 CYP6AB60 gene associated with tolerance to multi-plant allelochemicals from a polyphagous caterpillar tobacco cutworm (Spodoptera litura). Pesticide Biochemistry and Physiology 154, 60–66. https://doi.org/10.1016/j.pestbp.2018.12.006

Sundseth, S.S., Nix, C.E. and Waters, L.C. 1990. Isolation of insecticide resistance-related forms of cytochrome P-450 from Drosophila melanogaster. Biochem J, 265, 213-7.

Sutherland, T.D., Unnithan, G.C., Andersen, J.F., Evans, P.H., Murataliev, M.B., Szabo, L.Z., Mash, E.A., Bowers, W.S., Feyereisen, R., 1998. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proceedings of the National Academy of Sciences 95, 12884–12889. https://doi.org/10.1073/pnas.95.22.12884

Sutherland, T.D., Unnithan, G.C., Feyereisen, R., 2000. Terpenoid ω-hydroxylase (CYP4C7) messenger RNA levels in the corpora allata: a marker for ovarian control of juvenile hormone synthesis in Diploptera punctata. Journal of Insect Physiology 46, 1219–1227. https://doi.org/10.1016/S0022-1910(00)00042-1

Suwanchaichinda, C., and L. B. Brattsten. 2001. Effects of exposure to pesticides on carbaryl toxicity and cytochrome P450 activities in Aedes albopictus larvae (Diptera: Culicidae). Pestic. Biochem. Physiol. 70: 63–73

Suwanchaichinda, C., Brattsten, L.B., 2002. Induction of microsomal cytochrome P450s by tire‐leachate compounds, habitat components of Aedes albopictus mosquito larvae. Arch Insect Biochem Physiol 49, 71–79. https://doi.org/10.1002/arch.10009

Suwanchaichinda, C., Sun, D., Brattsten, L.B., 2014. Identification and Analysis of NADPH-Cytochrome P450 Reductase in Aedes sollicitans (Diptera: Culicidae). J Med Entomol 51, 958–963. https://doi.org/10.1603/ME13072

Swall, M.E., Benrabaa, S.A.M., Tran, N.M., Tran, T.D., Ventura, T., Mykles, D.L., 2021. Characterization of Shed genes encoding ecdysone 20-monooxygenase (CYP314A1) in the Y-organ of the blackback land crab, Gecarcinus lateralis. General and Comparative Endocrinology 301, 113658. https://doi.org/10.1016/j.ygcen.2020.113658

Syme, T., Gbegbo, M., Obuobi, D., Fongnikin, A., Agbevo, A., Todjinou, D., Ngufor, C., 2022. Pyrethroid-piperonyl butoxide (PBO) nets reduce the efficacy of indoor residual spraying with pirimiphos-methyl against pyrethroid-resistant malaria vectors. Sci Rep 12, 6857. https://doi.org/10.1038/s41598-022-10953-y

Sztal, T., Chung, H., Berger, S., Currie, P.D., Batterham, P., Daborn, P.J., 2012. A Cytochrome P450 Conserved in Insects Is Involved in Cuticle Formation. PLoS ONE 7, e36544. https://doi.org/10.1371/journal.pone.0036544

Sztal T, Chung H, Gramzow L, Daborn PJ, Batterham P, Robin C. 2007. Two independent duplications forming the Cyp307a genes in Drosophila. Insect Biochemistry and Molecular Biology 37: 1044-1053

Tak, J.-H., Jovel, E., Isman, M.B., 2017. Effects of rosemary, thyme and lemongrass oils and their major constituents on detoxifying enzyme activity and insecticidal activity in Trichoplusia ni. Pesticide Biochemistry and Physiology 140, 9–16. https://doi.org/10.1016/j.pestbp.2017.01.012

Talmann, L., Wiesner, J., Vilcinskas, A., 2017. Strategies for the construction of insect P450 fusion enzymes. Zeitschrift für Naturforschung C 72, 405–415. https://doi.org/10.1515/znc-2017-0041

Tan, S., Li, G., Guo, H., Wang, C., Wang, H., Liu, Z., Xu, B., Wang, Y., Guo, X., 2023. RNAi-mediated silencing of AccCYP6k1 revealed its role in the metabolic detoxification of Apis cerana cerana. Pesticide Biochemistry and Physiology 191, 105377. https://doi.org/10.1016/j.pestbp.2023.105377 [this is not CYP6K1 but CYP6BE1]

Tan, W., Acevedo, T., Harris, E.V., Alcaide, T.Y., Walters, J.R., Hunter, M.D., Gerardo, N.M., Roode, J.C., 2019. Transcriptomics of monarch butterflies ( Danaus plexippus ) reveals that toxic host plants alter expression of detoxification genes and down‐regulate a small number of immune genes. Mol Ecol 28, 4845–4863. https://doi.org/10.1111/mec.15219

Tang, B., Cheng, Y., Li, Y., Li, W., Ma, Y., Zhou, Q., Lu, K., 2020. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Chemosphere 259, 127490. https://doi.org/10.1016/j.chemosphere.2020.127490

Tang, G., Yao, J., Li, D., He, Y., Zhu, Y.-C., Zhang, X., Zhu, K.Y., 2017. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 enhanced the toxicity of chlorpyrifos. Chemosphere 186, 68–77. https://doi.org/10.1016/j.chemosphere.2017.07.137

Tang, J., Zhang, Q., Qu, C., Su, Q., Luo, C., Wang, R., 2024. Knockdown of one cytochrome P450 gene CYP6DW4 increases the susceptibility of Bemisia tabaci to dimpropyridaz, a novel pyridazine pyrazolecarboxamide insecticide. Pesticide Biochemistry and Physiology 201, 105888. https://doi.org/10.1016/j.pestbp.2024.105888

Tang, Q., Li, X., He, Y., Ma, K., 2023. RNA interference of NADPH-cytochrome P450 reductase increases the susceptibility of Aphis gossypii Glover to sulfoxaflor. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 274, 109745. https://doi.org/10.1016/j.cbpc.2023.109745

Tang, T., Zhao, C., Feng, X., Liu, X., Qiu, L., 2012. Knockdown of several components of cytochrome P450 enzyme systems by RNA interference enhances the susceptibility of Helicoverpa armigera to fenvalerate. Pest Management Science 68, 1501–1511. https://doi.org/10.1002/ps.3336

Tao, X.-Y., Xue, X.-Y., Huang, Y.-P., Chen, X.-Y., Mao, Y.-B., 2012. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Molecular Ecology 21, 4371–4385. https://doi.org/10.1111/j.1365-294X.2012.05548.x

Tarver, M.R., Coy, M.R., Scharf, M.E., 2012. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes. Archives of Insect Biochemistry and Physiology 80, 92–108. https://doi.org/10.1002/arch.21030

Tatchou-Nebangwa, N.M.T., Mugenzi, L.M.J., Muhammad, A., Nebangwa, D.N., Kouamo, M.F.M., Tagne, C.S.D., Tekoh, T.A., Tchouakui, M., Ghogomu, S.M., Ibrahim, S.S., Wondji, C.S., 2024. Two highly selected mutations in the tandemly duplicated CYP6P4a and CYP6P4b drive pyrethroid resistance in Anopheles funestus. https://doi.org/10.1101/2024.03.26.586794

Tate, L., Plapp, F., Hodgson, E., 1973. Cytochrome P-450 difference spectra of microsomes from several insecticide-resistant and -susceptible strains of the housefly, Musca domestica L. Chem Biol Interact 6, 237-247

Tate, L., Plapp, F., Hodgson, E., 1974. Genetics of cytochrome P450 in two insecticide-resistant strains of the housefly, Musca domestica L. Biochem Genet 11, 49-63.

Tate, L.G., Nakat, S.S., Hodgson, E., 1982. Comparison of detoxication activity in midgut and fat body during fifth instar development of the tobacco hornworm, Manduca sexta. Comp. Biochem. Physiol. 72C, 75-81.

Taylor M, Feyereisen R. 1996. Molecular biology and evolution of resistance of toxicants. Mol Biol Evol. 13:719-34. https://doi.org/10.1093/oxfordjournals.molbev.a025633

Tchigossou, G., Djouaka, R., Akoton, R., Riveron, J.M., Irving, H., Atoyebi, S., Moutairou, K., Yessoufou, A., Wondji, C.S., 2018. Molecular basis of permethrin and DDT resistance in an Anopheles funestus population from Benin. Parasites Vectors 11, 602. https://doi.org/10.1186/s13071-018-3115-y

Tchouakui, M., Ibrahim, S.S., Mangoua, M.K., Thiomela, R.F., Assatse, T., Ngongang-Yipmo, S.L., Muhammad, A., Mugenzi, L.J.M., Menze, B.D., Mzilahowa, T., Wondji, C.S., 2024. Substrate promiscuity of key resistance P450s confers clothianidin resistance while increasing chlorfenapyr potency in malaria vectors. Cell Reports 43, 114566. https://doi.org/10.1016/j.celrep.2024.114566

Tchouakui, M., Mugenzi, L.M.J., Wondji, M.J., Tchoupo, M., Njiokou, F., Wondji, C.S., 2022. A 6.5kb Intergenic Structural Variation Exacerbates the Fitness Cost of P450-Based Metabolic Resistance in the Major African Malaria Vector Anopheles funestus. Genes 13, 626. https://doi.org/10.3390/genes13040626

Tchouakui, M., Mugenzi, L.M.J., Wondji, M.J., Tchoupo, M., Njiokou, F., Wondji, C.S., 2021. Combined over-expression of two cytochrome P450 genes exacerbates the fitness cost of pyrethroid resistance in the major African malaria vector Anopheles funestus. Pesticide Biochemistry and Physiology 173, 104772. https://doi.org/10.1016/j.pestbp.2021.104772

Techer, M.A., Rane, R.V., Grau, M.L., Roberts, J.M.K., Sullivan, S.T., Liachko, I., Childers, A.K., Evans, J.D., Mikheyev, A.S., 2019. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol 2, 357. https://doi.org/10.1038/s42003-019-0606-0

Teng, H., Zuo, Y., Yuan, J., Fabrick, J.A., Wu, Y., Yang, Y., 2022. High frequency of ryanodine receptor and cytochrome P450 CYP9A186 mutations in insecticide-resistant field populations of Spodoptera exigua from China. Pesticide Biochemistry and Physiology 186, 105153. https://doi.org/10.1016/j.pestbp.2022.105153

Terhzaz, S., Cabrero, P., Brinzer, R.A., Halberg, K.A., Dow, J.A.T., Davies, S.-A., 2015. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance. Insect Biochemistry and Molecular Biology 67, 38–46. https://doi.org/10.1016/j.ibmb.2015.06.002

Terriere, L., Yu, S., 1974. The induction of detoxifying enzymes in insects. J Agric Food Chem 22, 366-373.

Terriere, L., Yu, S., Hoyer, R., 1971. Induction of microsomal oxidase in F1 hybrids of a high and a low oxidase housefly strain. Science 171, 581-583.

Tholl, D., 2021. Biosynthesis of terpene pheromones in hemiptera/stink bugs, in: Insect Pheromone Biochemistry and Molecular Biology. Elsevier, pp. 269–284. https://doi.org/10.1016/B978-0-12-819628-1.00009-2

Thomas, A.M., Hui, C., South, A., McVey, M., 2013. Common Variants of Drosophila melanogaster Cyp6d2 Cause Camptothecin Sensitivity and Synergize With Loss of Brca2. G3 3, 91-99. https://doi.org/10.1534/g3.112.003996

Thomas J. 2007. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genet 3: e67

Thongsinthusak, T., Krieger, R., 1974. Inhibitory and inductive effects of piperonyl butoxide on dihydroisodrin hydroxylation in vivo and in vitro in black cutworm (Agrotis ypsilon) larvae. Life Sci 14, 2131-2141.

Tian, K., Feng, J., Zhu, J., Cheng, J., Li, M., Qiu, X., 2021. Pyrethrin-resembling pyrethroids are metabolized more readily than heavily modified ones by CYP9As from Helicoverpa armigera. Pesticide Biochemistry and Physiology 176, 104871. https://doi.org/10.1016/j.pestbp.2021.104871

Tian, K., Liu, D., Yuan, Y., Li, M., Qiu, X., 2017. CYP6B6 is involved in esfenvalerate detoxification in the polyphagous lepidopteran pest, Helicoverpa armigera. Pesticide Biochemistry and Physiology 138, 51–56. https://doi.org/10.1016/j.pestbp.2017.02.006

Tian, K., Zhu, J., Qiu, X., 2024. Metabolism of Furanocoumarins by Three Recombinant CYP9A Proteins From the Polyphagous Cotton Bollworm Helicoverpa armigera. Arch Insect Biochem Physiol 117, e70004. https://doi.org/10.1002/arch.70004

Tian, K., Zhu, J., Li, M., Qiu, X., 2019. Capsaicin is efficiently transformed by multiple cytochrome P450s from Capsicum fruit-feeding Helicoverpa armigera. Pesticide Biochemistry and Physiology 156, 145–151. https://doi.org/10.1016/j.pestbp.2019.02.015

Tian, L., Gao, X., Zhang, S., Zhang, Y., Ma, D., Cui, J., 2021. Dynamic changes of transcriptome of fifth-instar spodoptera litura larvae in response to insecticide. 3 Biotech 11, 98. https://doi.org/10.1007/s13205-021-02651-9

Tian, X., Su, X., Li, C., Zhou, Y., Li, S., Guo, J., Fan, Q., Lü, S., Zhang, Y., 2021. Draft genome of the blister beetle, Epicauta chinensis. International Journal of Biological Macromolecules 193, 1694–1706. https://doi.org/10.1016/j.ijbiomac.2021.11.006

Tian, X., Zhao, S., Guo, Z., Hu, B., Wei, Q., Tang, Y., Su, J., 2018. Molecular characterization, expression pattern and metabolic activity of flavin-dependent monooxygenases in Spodoptera exigua: Insecticide metabolism by FMOs of S. exigua. Insect Mol Biol 27, 533–544. https://doi.org/10.1111/imb.12392

Tijet, N., Helvig, C., Feyereisen, R., 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster : Annotation, intron-exon organization and phylogeny. Gene 262, 189–198. https://doi.org/10.1016/S0378-1119(00)00533-3

Tiwari, S., Killiny, N., Mann, R.S., Wenninger, E.J., Stelinski, L.L., 2013. Abdominal color of the Asian citrus psyllid, Diaphorina citri , is associated with susceptibility to various insecticides. Pest Management Science 69, 535–541. https://doi.org/10.1002/ps.3407

Toé, K.H., N’Falé, S., Dabiré, R.K., Ranson, H., Jones, C.M., 2015. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16, 146. https://doi.org/10.1186/s12864-015-1342-6

Tomita, T., Scott, J. G. 1995. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Biochem Mol Biol 25, 275-83.

Tomita, T., Liu, N., Smith, F.F., Sridhar, P., Scott, J.G., 1995. Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the housefly, Musca domestica. Insect Molecular Biology 4, 135–140. https://doi.org/10.1111/j.1365-2583.1995.tb00018.x

Traverso, L., Lavore, A., Sierra, I., Palacio, V., Martinez-Barnetche, J., Latorre-Estivalis, J.M., Mougabure-Cueto, G., Francini, F., Lorenzo, M.G., Rodríguez, M.H., Ons, S., Rivera-Pomar, R.V., 2017. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families. PLoS Negl Trop Dis 11, e0005313. https://doi.org/10.1371/journal.pntd.0005313

Traylor, M.J., Baek, J.-M., Richards, K.E., Fusetto, R., Huang, W., Josh, P., Chen, Z., Bollapragada, P., O’Hair, R.A.J., Batterham, P., Gillam, E.M.J., 2017. Recombinant expression and characterization of Lucilia cuprina CYP6G3: Activity and binding properties toward multiple pesticides. Insect Biochemistry and Molecular Biology 90, 14–22. https://doi.org/10.1016/j.ibmb.2017.09.004

Trible, W., Chandra, V., Lacy, K.D., Limón, G., McKenzie, S.K., Olivos-Cisneros, L., Arsenault, S.V., Kronauer, D.J.C., 2023. A caste differentiation mutant elucidates the evolution of socially parasitic ants. Current Biology S0960982223001367. https://doi.org/10.1016/j.cub.2023.01.067

Trienens, M., Kraaijeveld, K., Wertheim, B., 2017. Defensive repertoire of Drosophila larvae in response to toxic fungi. Mol Ecol 26, 5043–5057. https://doi.org/10.1111/mec.14254

Trienens, M., Kurtz, J., Wertheim, B., 2023. Rapid but narrow – Evolutionary adaptation and transcriptional response of Drosophila melanogaster to toxic mould. Molecular Ecology mec.16885. https://doi.org/10.1111/mec.16885

Troczka, B.J., Homem, R.A., Reid, R., Beadle, K., Kohler, M., Zaworra, M., Field, L.M., Williamson, M.S., Nauen, R., Bass, C., Davies, T.G.E., 2019. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris. Insect Biochemistry and Molecular Biology 111, 103171. https://doi.org/10.1016/j.ibmb.2019.05.006

Tsakireli, D., Riga, M., Kounadi, S., Douris, V., Vontas, J., 2019. Functional characterization of CYP6A51, a cytochrome P450 associated with pyrethroid resistance in the Mediterranean fruit fly Ceratitis capitata. Pesticide Biochemistry and Physiology 157, 196–203. https://doi.org/10.1016/j.pestbp.2019.03.022

Tsakireli, D., Vandenhole, M., Pergantis S.A., Riga, M., Balabanidou V., De Rouck S., Ray, J., Zimmer, C., Talmann, L., Van Leeuwen T., Vontas, J., 2024. The cytochrome P450 subfamilies CYP392A and CYP392D are key players in acaricide metabolism in Tetranychus urticae. Pesticide Biochemistry and Physiology 106031. https://doi.org/10.1016/j.pestbp.2024.106031

Tsang, S.S.K., Law, S.T.S., Li, C., Qu, Z., Bendena, W.G., Tobe, S.S., Hui, J.H.L., 2020. Diversity of Insect Sesquiterpenoid Regulation. Front. Genet. 11, 1027. https://doi.org/10.3389/fgene.2020.01027

Tseng SP, Lee SH, Choe DH, Lee CY, Overexpression of cytochrome P450 gene CYP6K1 is associated with pyrethroid resistance in German cockroaches (Blattodea: Ectobiidae) from California, Journal of Economic Entomology, 117,1071–1076, https://doi.org/10.1093/jee/toae057

Tsvetkov, N., Bahia, S., Calla, B., Berenbaum, M.R., Zayed, A., 2023. Genetics of tolerance in honeybees to the neonicotinoid clothianidin. iScience 26, 106084. https://doi.org/10.1016/j.isci.2023.106084

Turner, T.L., Hahn, M.W., Nuzhdin, S.V., 2005. Genomic Islands of Speciation in Anopheles gambiae. PLoS Biol 3, e285. https://doi.org/10.1371/journal.pbio.0030285

Ugaki, M., Shono, T. and Fukami, J.I. 1985. Metabolism of Fenitrothion by Organophosphorous-Resistant and-Susceptible House Flies, Musca domestica L. Pestic. Biochem. Physiol., 23, 33-40.

Ullah, F., Gul, H., Tariq, K., Desneux, N., Gao, X., Song, D., 2020. Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. Pesticide Biochemistry and Physiology 170, 104687. https://doi.org/10.1016/j.pestbp.2020.104687

Ullah, F., Gul, H., Tariq, K., Hafeez, M., Desneux, N., Song, D., 2023. Silencing of Cytochrome P450 genes CYP6CY14 and CYP6DC1 in Aphis gossypii by RNA interference enhances susceptibility to clothianidin. entomologia 43, 669–678. https://doi.org/10.1127/entomologia/2023/2002

Unnithan GC, Andersen JF, Hisano T, Kuwano E, Feyereisen R. 1995. Inhibition of juvenile hormone biosynthesis and methyl farnesoate epoxidase activity by 1,5-disubstituted imidazoles in the cockroach, Diploptera punctata. Pesticide Science 43: 13-19

Uryu, O., Ou, Q., Komura-Kawa, T., Kamiyama, T., Iga, M., Syrzycka, M., Hirota, K., Kataoka, H., Honda, B.M., King-Jones, K., Niwa, R., 2018. Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 208, 605–622. https://doi.org/10.1534/genetics.117.300268

van den Bosch, T.J.M., Welte, C.U., 2017. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10, 531–540. https://doi.org/10.1111/1751-7915.12483

Vandenhole M, Dermauw W, Van Leeuwen T. Short term transcriptional responses of P450s to phytochemicals in insects and mites. 2021. Curr Opin Insect Sci. 43:117-127. https://doi.org/10.1016/j.cois.2020.12.002

Van Ekert, E., Wang, M., Miao, Y.-G., Brent, C.S., Hull, J.J., 2016. RNA interference-mediated knockdown of the Halloween gene Spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus: RNAi knockdown of Spookiest in Lygus hesperus. Insect Mol Biol 25, 550–565. https://doi.org/10.1111/imb.12242

Van Leeuwen, T., Dermauw, W., 2016. The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. Annu. Rev. Entomol. 61, 475–498. https://doi.org/10.1146/annurev-ento-010715-023907

Vandenhole, M., Dermauw, W., Van Leeuwen, T., 2021. Short term transcriptional responses of P450s to phytochemicals in insects and mites. Current Opinion in Insect Science 43, 117–127. https://doi.org/10.1016/j.cois.2020.12.002

Vannette, R.L., Mohamed, A., Johnson, B.R., 2015. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci Rep 5, 16224. https://doi.org/10.1038/srep16224

Varela, G.M., García, B.A., Stroppa, M.M., 2024. RNA interference of NADPH cytochrome P450 increased deltamethrin susceptibility in a resistant strain of the Chagas disease vector Triatoma infestans. Acta Tropica 252, 107149. https://doi.org/10.1016/j.actatropica.2024.107149

Vasquez, D.D.N., Pinheiro, D.H., Teixeira, L.A., Moreira-Pinto, C.E., Macedo, L.L.P., Salles-Filho, A.L.O., Silva, M.C.M., Lourenço-Tessutti, I.T., Morgante, C.V., Silva, L.P., Grossi-de-Sa, M.F., 2023. Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weevil. Front. Mol. Biosci. 10, 1073721. https://doi.org/10.3389/fmolb.2023.1073721

Ventura, T., Bose, U., Fitzgibbon, Q.P., Smith, G.G., Shaw, P.N., Cummins, S.F., Elizur, A., 2017. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. The Journal of Steroid Biochemistry and Molecular Biology 171, 262–269. https://doi.org/10.1016/j.jsbmb.2017.04.007

Vertacnik, K., Herrig, D., Godfrey, R.K., Hill, T., Geib, S., Unckless, R., Nelson, D., Linnen, C.R., 2021. Ecological correlates of gene family size: the draft genome of the redheaded pine sawfly Neodiprion lecontei (preprint). Evolutionary Biology. https://doi.org/10.1101/2021.03.14.435331

Vertacnik, K.L., Herrig, D.K., Godfrey, R.K., Hill, T., Geib, S.M., Unckless, R.L., Nelson, D.R., Linnen, C.R., 2023. Evolution of five environmentally responsive gene families in a pine‐feeding sawfly, Neodiprion lecontei (Hymenoptera: Diprionidae). Ecology and Evolution 13, e10506. https://doi.org/10.1002/ece3.10506

Vertacnik, K.L., Linnen, C.R., 2017. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann. N.Y. Acad. Sci. 1389, 186–212. https://doi.org/10.1111/nyas.13311

Vervaet, L., Charamis, J., Vandenhole, M., Vontas, J., Van Leeuwen, T., 2024. Acaricide resistance mechanisms and host plant responses in the tomato specialist Aculops lycopersici . Pest Management Science ps.8499. https://doi.org/10.1002/ps.8499

Villalobos-Sambucaro MJ, Nouzova M, Ramirez CE, Eugenia Alzugaray M, Fernandez-Lima F, Ronderos JR, Noriega FG. 2020. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Scientific Reports 10: 3091

Vincent, D.R., Moldenke, A.F., Farnsworth, D.E., Terriere, L.C., 1985. Cytochrome P-450 in insects. 6. Age dependency and phenobarbital induction of cytochrome P-450, P-450 reductase, and monooxygenase activities in susceptible and resistant strains of Musca domestica. Pestic. Biochem. Physiol. 23, 171-181.

Vlogiannitis, S., Mavridis, K., Dermauw, W., Snoeck, S., Katsavou, E., Morou, E., Harizanis, P., Swevers, L., Hemingway, J., Feyereisen, R., Van Leeuwen, T., Vontas, J., 2021. Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor. Proc Natl Acad Sci USA 118, e2020380118. https://doi.org/10.1073/pnas.2020380118

Volonté, M., Traverso, L., Estivalis, J.M.L., Almeida, F.C., Ons, S., 2022. Comparative analysis of detoxification-related gene superfamilies across five hemipteran species. BMC Genomics 23, 757. https://doi.org/10.1186/s12864-022-08974-y

Vontas, J., Blass, C., Koutsos, A., David, J., Kafatos, F., Louis, C., Hemingway, J., Christophides, G., Ranson, H., 2005. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14, 509-521.

Vontas, J., David, J., Nikou, D., Hemingway, J., Christophides, G., Louis, C., Ranson, H., 2007. Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol 16, 315-324.

Vontas, J., Grigoraki, L., Morgan, J., Tsakireli, D., Fuseini, G., Segura, L., Niemczura de Carvalho, J., Nguema, R., Weetman, D., Slotman, M.A., Hemingway, J., 2018. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. Proc Natl Acad Sci USA 115, 4619–4624. https://doi.org/10.1073/pnas.1719663115

Vontas, J., Katsavou, E., Mavridis, K., 2020. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pesticide Biochemistry and Physiology 170, 104666. https://doi.org/10.1016/j.pestbp.2020.104666

Vontas, J., Kioulos, E., Pavlidi, N., Morou, E., Della Torre, A., Ranson, H., 2012. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology 104, 126–131. https://doi.org/10.1016/j.pestbp.2012.05.008

Vulule, J., Beach, R., Atieli, F., McAllister, J., Brogdon, W., Roberts, J., Mwangi, R., Hawley, W., 1999. Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnated nets. Med Vet Entomol 13, 239-244.

Wagah, M.G., Korlević, P., Clarkson, C., Miles, A., Lawniczak, M.K.N., Makunin, A., 2021. Genetic variation at the Cyp6m2 putative insecticide resistance locus in Anopheles gambiae and Anopheles coluzzii. Malar J 20, 234. https://doi.org/10.1186/s12936-021-03757-4

Walsh, T.K., Joussen, N., Tian, K., McGaughran, A., Anderson, C.J., Qiu, X., Ahn, S.-J., Bird, L., Pavlidi, N., Vontas, J., Ryu, J., Rasool, A., Barony Macedo, I., Tay, W.T., Zhang, Y., Whitehouse, M.E.A., Silvie, P.J., Downes, S., Nemec, L., Heckel, D.G., 2018. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLoS ONE 13, e0197760. https://doi.org/10.1371/journal.pone.0197760

Wamba, A.N.R., Ibrahim, S.S., Kusimo, M.O., Muhammad, A., Mugenzi, L.M.J., Irving, H., Wondji, M.J., Hearn, J., Bigoga, J.D., Wondji, C.S., 2021. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. Insect Biochemistry and Molecular Biology 138, 103647. https://doi.org/10.1016/j.ibmb.2021.103647

Wan, H., Liu, Y., Li, M., Zhu, S., Li, X., Pittendrigh, B.R., Qiu, X., 2014. Nrf2/Maf-binding-site-containing functional Cyp6a2 allele is associated with DDT resistance in Drosophila melanogaster: DDT resistance-associated Cyp6a2 allele. Pest. Manag. Sci. 70, 1048–1058. https://doi.org/10.1002/ps.3645

Wan, L., Zhou, A., Xiao, W., Zou, B., Jiang, Y., Xiao, J., Deng, C., Zhang, Y., The members of the Genefang Research Team: Zi-yan Huang, Cong-fan Bu, Jie Zeng, Zhao-nan Hao, Yan-peng Chen, and Meng-jia Liu, 2021. Cytochrome P450 monooxygenase genes in the wild silkworm, Bombyx mandarina. PeerJ 9, e10818. https://doi.org/10.7717/peerj.10818

Wan, P.-J., Jia, S., Li, N., Fan, J.-M., Li, G.-Q., 2015. A Halloween gene shadow is a potential target for RNA-interference-based pest management in the small brown planthopper Laodelphax striatellus: Halloween gene shadow in L. striatellus. Pest. Manag. Sci. 71, 199–206. https://doi.org/10.1002/ps.3780

Wan, P.-J., Jia, S., Li, N., Fan, J.-M., Li, G.-Q., 2014a. RNA Interference Depletion of the Halloween Gene Disembodied Implies its Potential Application for Management of Planthopper Sogatella furcifera and Laodelphax striatellus. PLoS ONE 9, e86675. https://doi.org/10.1371/journal.pone.0086675

Wan, P.-J., Jia, S., Li, N., Fan, J.-M., Li, G.-Q., 2014b. The putative Halloween gene phantom involved in ecdysteroidogenesis in the white-backed planthopper Sogatella furcifera. Gene 548, 112–118. https://doi.org/10.1016/j.gene.2014.07.023

Wan, P.-J., Shi, X.-Q., Kong, Y., Zhou, L.-T., Guo, W.-C., Ahmat, T., Li, G.-Q., 2013. Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology 107, 360–368. https://doi.org/10.1016/j.pestbp.2013.10.004

Wang, A., Yang, Y., Zhou, Y., Zhang, Y., Xue, C., Zhao, Y., Zhao, M., Zhang, J., 2023. A microRNA, PC-5p-30_205949, regulates triflumezopyrim susceptibility in Laodelphax striatellus (Fallén) by targeting CYP419A1 and ABCG23. Pesticide Biochemistry and Physiology 192, 105413. https://doi.org/10.1016/j.pestbp.2023.105413

Wang, A., Zhang, Y., Liu, S., Xue, C., Zhao, Y., Zhao, M., Yang, Y., Zhang, J., 2024. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Bull. Entomol. Res. 1–13. https://doi.org/10.1017/S000748532300038X

Wang, B., Shahzad, M.F., Zhang, Z., Sun, H., Han, P., Li, F., Han, Z., 2014. Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis. Biochemical and Biophysical Research Communications 443, 756–760. https://doi.org/10.1016/j.bbrc.2013.12.045

Wang, C., Dong, W., Shang, J., Li, H., Chen, Z., Zhu, B., Liang, P., Shi, X., 2024. S431F mutation on AChE1 and overexpression of P450 genes confer high pirimicarb resistance in Sitobion miscanthi. Pesticide Biochemistry and Physiology 202, 105957. https://doi.org/10.1016/j.pestbp.2024.105957

Wang, D., Shi, X., Liu, D., Yang, Y., Shang, Z., 2020. Transcriptome Profiling Revealed Potentially Critical Roles for Digestion and Defense-Related Genes in Insects’ Use of Resistant Host Plants: A Case Study with Sitobion Avenae. Insects 11, 90. https://doi.org/10.3390/insects11020090

Wang, F., Chen, S., Shi, Y., Wu, S., Yang, Y., Wang, X., 2024. Transgenic expression of SeCYP9A186 and PxFMO2 confers resistance to emamectin benzoate in Plutella xylostella . Pest Management Science ps.8598. https://doi.org/10.1002/ps.8598

Wang, H., Lu, Z., Li, M., Fang, Y., Qu, J., Mao, T., Chen, J., Li, F., Sun, H., Li, B., 2020. Responses of detoxification enzymes in the midgut of Bombyx mori after exposure to low-dose of acetamiprid. Chemosphere 251, 126438. https://doi.org/10.1016/j.chemosphere.2020.126438

Wang, H., Shi, Y., Wang, L., Liu, S., Wu, S., Yang, Y., Feyereisen, R., Wu, Y., 2018. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat Commun 9, 4820. https://doi.org/10.1038/s41467-018-07226-6

Wang, J., Lv, Z., Lei, Z., Chen, Z., Lv, B., Yang, H., Wang, Z., Song, Q., 2019. Expression and functional analysis of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata under cadmium stress. Ecotoxicology and Environmental Safety 172, 19–25. https://doi.org/10.1016/j.ecoenv.2019.01.034

Wang, K., Liu, M., Wang, Y., Song, W., Tang, P., 2020. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. Pesticide Biochemistry and Physiology 168, 104622. https://doi.org/10.1016/j.pestbp.2020.104622

Wang, K., Peng, X., Zuo, Y., Li, Y., Chen, M., 2016. Molecular Cloning, Expression Pattern and Polymorphisms of NADPH-Cytochrome P450 Reductase in the Bird Cherry-Oat Aphid Rhopalosiphum padi (L.). PLoS ONE 11, e0154633. https://doi.org/10.1371/journal.pone.0154633

Wang, K., Zhao, J., Han, Z., Chen, M., 2022. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. Pesticide Biochemistry and Physiology 183, 105088. https://doi.org/10.1016/j.pestbp.2022.105088

Wang LX, Tao S, Zhang Y, Jia YL, Wu SF, Gao CF. 2021. Mechanism of metabolic resistance to pymetrozine in Nilaparvata lugens: over-expression of cytochrome P450 CYP6CS1 confers pymetrozine resistance. Pest Manag Sci.77,4128-4137. https://doi.org/10.1002/ps.6438.

Wang, L., Bieber Urbauer, R.J., Urbauer, J.L. and Benson, D.R. 2003. House fly cytochrome b5 exhibits kinetically trapped hemin and selectivity in hemin binding. Biochem Biophys Res Commun, 305, 840-845.

Wang, L., Cowley, A B, Terzyan, S., Zhang, X., Benson, D. R. 2007. Comparison of cytochromes b5 from insects and vertebrates. Proteins 67, 293-304.

Wang L, Dankert H, Perona P, Anderson D. 2008. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci U S A 105: 5657-5663

Wang, L., Li, Z., Yi, T., Li, G., Smagghe, G., Jin, D., 2023. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. IJMS 24, 14797. https://doi.org/10.3390/ijms241914797

Wang, M, Roberts, D. L., Paschke, R., Shea, T. M, Masters, B S., Kim, J. J. 1997. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A 94, 8411-6.

Wang, P., Jin, M., Wu, C., Peng, Y., He, Y., Wang, H., Xiao, Y., 2024. Population genomics of Agrotis segetum provide insights into the local adaptive evolution of agricultural pests. BMC Biol 22, 42. https://doi.org/10.1186/s12915-024-01844-x

Wang, Q., Li, M., Pan, J., Di, M., Liu, Q., Meng, F., Scott, J.G., Qiu, X., 2012. Diversity and frequencies of genetic mutations involved in insecticide resistance in field populations of the house fly (Musca domestica L.) from China. Pesticide Biochemistry and Physiology 102, 153–159. https://doi.org/10.1016/j.pestbp.2011.12.007

Wang, R., Che, W., Wang, J., Qu, C., Luo, C., 2020. Cross-resistance and biochemical mechanism of resistance to cyantraniliprole in a near-isogenic line of whitefly Bemisia tabaci Mediterranean (Q biotype). Pesticide Biochemistry and Physiology 167, 104590. https://doi.org/10.1016/j.pestbp.2020.104590

Wang, R., Zhu, Y., Deng, L., Zhang, H., Wang, Q., Yin, M., Song, P., Elzaki, M.E.A., Han, Z., Wu, M., 2017. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2: Imidacloprid is hydroxlated by Laodelphax striatellus CYP6AY3v2. Insect Mol Biol 26, 543–551. https://doi.org/10.1111/imb.12317

Wang, R.-L., He, Y.-N., Staehelin, C., Liu, S.-W., Su, Y.-J., Zhang, J.-E., 2017. Identification of Two Cytochrome Monooxygenase P450 Genes, CYP321A7 and CYP321A9, from the Tobacco Cutworm Moth (Spodoptera Litura) and Their Expression in Response to Plant Allelochemicals. IJMS 18, 2278. https://doi.org/10.3390/ijms18112278

Wang, R.-L., Li, J., Staehelin, C., Xin, X.-W., Su, Y.-J., Zeng, R.-S., 2015a. Expression Analysis of Two P450 Monooxygenase Genes of the Tobacco Cutworm Moth (Spodoptera litura) at Different Developmental Stages and in Response to Plant Allelochemicals. J Chem Ecol 41, 111–119. https://doi.org/10.1007/s10886-014-0540-z

Wang, R.-L., Liu, S.-W., Baerson, S., Qin, Z., Ma, Z.-H., Su, Y.-J., Zhang, J.-E., 2018. Identification and Functional Analysis of a Novel Cytochrome P450 Gene CYP9A105 Associated with Pyrethroid Detoxification in Spodoptera exigua Hübner. IJMS 19, 737. https://doi.org/10.3390/ijms19030737

Wang, R.-L., Staehelin, C., Xia, Q.-Q., Su, Y.-J., Zeng, R.-S., 2015b. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides. IJMS 16, 22606–22620. https://doi.org/10.3390/ijms160922606

Wang, R.-L., Xia, Q.-Q., Baerson, S.R., Ren, Y., Wang, J., Su, Y.-J., Zheng, S.-C., Zeng, R.-S., 2015c. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. Journal of Insect Physiology 75, 54–62. https://doi.org/10.1016/j.jinsphys.2015.02.013

Wang, R.-L., Zhu-Salzman, K., Baerson, S.R., Xin, X.-W., Li, J., Su, Y.-J., Zeng, R.-S., 2017. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm ( Spodoptera litura ) and RNA interference to evaluate its role in commonly used insecticides: CYP321B1 and its role in insecticide resistance. Insect Science 24, 235–247. https://doi.org/10.1111/1744-7917.12315

Wang, S., He, G., Chen, R., Li, F., Li, G., 2012. THE INVOLVEMENT OF CYTOCHROME P450 MONOOXYGENASES IN METHANOL ELIMINATION IN Drosophila melanogaster LARVAE. Arch Insect Biochem Physiol 79, 264–275. https://doi.org/10.1002/arch.21021

Wang, S., Huang, J.-M., Guo, F.-R., Liu, C., Xie, Y., Qiao, S.-T., Chen, Y.-X., Wu, S.-F., Bass, C., Gao, C.-F., 2024. Flavin-Dependent Monooxgenase Confers Resistance to Chlorantraniliprole and Spinetoram in the Rice Stem Borer Chilo suppressalis Walker (Lepidoptera: Crambidae). J. Agric. Food Chem. 72, 26943–26956. https://doi.org/10.1021/acs.jafc.4c09254

Wang, S., Li, B., Zhang, D., 2019. NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae). Front. Physiol. 10, 913. https://doi.org/10.3389/fphys.2019.00913

Wang, S., Liu, C., Qiao, S.-T., Guo, F.-R., Xie, Y., Sun, H., Liu, Y., Zhao, S.-Q., Zhou, L.-Q., He, L.-F., Yang, F.-X., Wu, S.-F., Bass, C., Gao, C.-F., 2024. The Evolution and Mechanisms of Multiple-Insecticide Resistance in Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). J. Agric. Food Chem. 72, 26475–26490. https://doi.org/10.1021/acs.jafc.4c06839

Wang, S.Y., Hackney Price, J., Zhang, D., 2019. Hydrocarbons catalysed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani. Insect Mol Biol 28, 637–648. https://doi.org/10.1111/imb.12581

Wang, T., Liu, X., Luo, Z., Cai, X., Li, Z., Bian, L., Xiu, C., Chen, Z., Li, Q., Fu, N., 2024. Transcriptome-Wide Identification of Cytochrome P450s in Tea Black Tussock Moth (Dasychira baibarana) and Candidate Genes Involved in Type-II Sex Pheromone Biosynthesis. Insects 15, 139. https://doi.org/10.3390/insects15020139

Wang, X., Hobbs, A., 1995. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem Mol Biol 25, 1001-1009.

Wang, X., Chen, Y., Gong, C., Yao, X., Jiang, C., Yang, Q., 2018. Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole: Role of novel cytochrome P450 genes in resistance to chlorantraniliprole. Pest. Manag. Sci 74, 1938–1952. https://doi.org/10.1002/ps.4898

Wang X, Dai W, Zhang C. 2024. Transcription Factors AhR and ARNT Regulate the Expression of CYP6SX1 and CYP3828A1 Involved in Insecticide Detoxification in Bradysia odoriphaga. J Agric Food Chem.72:10805-10813. https://doi.org/10.1021/acs.jafc.4c00358.

Wang, X., Huang, Q., Hao, Q., Ran, S., Wu, Y., Cui, P., Yang, J., Jiang, C., Yang, Q., 2018. Insecticide resistance and enhanced cytochrome P450 monooxygenase activity in field populations of Spodoptera litura from Sichuan, China. Crop Protection 106, 110–116. https://doi.org/10.1016/j.cropro.2017.12.020

Wang, X., Shuai, J., Kong, Y., Li, Z., Li, W., Cheng, J., 2022. Mechanism of the distinct toxicity level of imidacloprid and thiacloprid against honey bees: An in silico study based on cytochrome P450 9Q3. Journal of Molecular Graphics and Modelling 116, 108257. https://doi.org/10.1016/j.jmgm.2022.108257

Wang, X.G., Gao, X.W., Liang, P., Shi, X.Y., Song, D.L., 2016. Induction of Cytochrome P450 Activity by the Interaction of Chlorantraniliprole and Sinigrin in the Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 45, 500–507. https://doi.org/10.1093/ee/nvw007

Wang, X.-G., Ruan, Y.-W., Gong, C.-W., Xiang, X., Xu, X., Zhang, Y.-M., Shen, L.-T., 2019. Transcriptome Analysis of Sogatella furcifera (Homoptera: Delphacidae) in Response to Sulfoxaflor and Functional Verification of Resistance-Related P450 Genes. IJMS 20, 4573. https://doi.org/10.3390/ijms20184573

Wang, Y., Jin, R., Liu, C., Gao, Y., Deng, X., Wan, H., Li, J., 2021. Functional characterization of the transcription factors AhR and ARNT in Nilaparvata lugens. Pesticide Biochemistry and Physiology 176, 104875. https://doi.org/10.1016/j.pestbp.2021.104875

Wang, Y., Tian, J., Han, Q., Zhang, Y., Liu, Z., 2021. Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 248, 109118. https://doi.org/10.1016/j.cbpc.2021.109118

Wang, Y., Tian, Y., Zhou, D., Fang, J., Cao, J., Shi, C., Lei, Y., Fu, K., Guo, W., Jiang, W., 2024. Expression and Functional Analysis of Two Cytochrome P450 Monooxygenase Genes and a UDP-Glycosyltransferase Gene Linked with Thiamethoxam Resistance in the Colorado Potato Beetle. Insects 15, 559. https://doi.org/10.3390/insects15080559

Wang, Y., Wilson, A.E., Liu, N., 2022. A New Method to Address the Importance of Detoxified Enzyme in Insecticide Resistance – Meta-Analysis. Front. Physiol. 13, 818531. https://doi.org/10.3389/fphys.2022.818531

Wang, Y., Wu, L., Li, H., Wen, X., Ma, E., Zhu, K., Zhang, J., 2020. The microRNA miR‐184 regulates the CYP303A1 transcript level to control molting of Locusta migratoria. Insect Science 1744-7917.12837. https://doi.org/10.1111/1744-7917.12837

Wang, Y.-C., Chang, Y.-W., Xie, H.-F., Gong, W.-R., Wu, C.-D., Du, Y.-Z., 2024. The cytochrome P450 gene CYP4g1 driven by high temperature confers abamectin tolerance on Liriomyza trifolii through promoting cuticular hydrocarbons biosynthesis. Pesticide Biochemistry and Physiology 203, 106012. https://doi.org/10.1016/j.pestbp.2024.106012

Wang, Z., Hao, W., Wang, H., Deng, P., Li, T., Wang, C., Zhao, J., Chen, C., Ji, W., Liu, X., 2024. Genome-Wide Comparative Analysis of the Cytochrome P450 Monooxygenase Family in 19 Aphid Species and Their Expression Analysis in 4 Cereal Crop Aphids. IJMS 25, 6668. https://doi.org/10.3390/ijms25126668

Wang, Z.-C., Peng, L.-Y., Cheng, X., Yang, R.-R., Li, D.-T., Zhang, C.-X., Bao, Y.-Y., 2022. A CYP380C10 gene is required for waterproofing and water retention in the insect integument. Journal of Insect Physiology 138, 104380. https://doi.org/10.1016/j.jinsphys.2022.104380

Wang, Z.-C., Tao, S., Cheng, X., Li, D.-T., Zhang, C.-X., Bao, Y.-Y., 2022. CPR Gene Contributes to Integument Function and Ovary Development in a Rice Planthopper. IJMS 23, 2875. https://doi.org/10.3390/ijms23052875

Wang, Z.-G., Jiang, S.-S., Mota-Sanchez, D., Wang, W., Li, X.-R., Gao, Y.-L., Lu, X.-P., Yang, X.-Q., 2019. Cytochrome P450-Mediated λ-Cyhalothrin-Resistance in a Field Strain of Helicoverpa armigera from Northeast China. J. Agric. Food Chem. 67, 3546–3553. https://doi.org/10.1021/acs.jafc.8b07308

Warren, J., O'Connor, M., Gilbert, L., 2009. Studies on the Black Box: incorporation of 3-oxo-7-dehydrocholesterol into ecdysteroids by Drosophila melanogaster and Manduca sexta. Insect Biochem Mol Biol 39, 677-687.

Warren J, Petryk A, Marques G, Jarcho M, Parvy J, Dauphin-Villemant C, O'Connor M, Gilbert L. 2002. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc Natl Acad Sci U S A 99: 11043-11048.

Warren J, Petryk A, Marques G, Parvy J, Shinoda T, Itoyama K, Kobayashi J, Jarcho M, Li Y, O'Connor M, Dauphin-Villemant C, et al. 2004. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem Mol Biol 34: 991-1010

Waters, L.C., 1992. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proc. Natl. Acad. Sci. USA.

Waters, L.C. and Nix, C.E. 1988. Regulation of insecticide resistance-related cytochrome P-450 expression in Drosophila melanogaster. Pestic. Biochem. Physiol., 30, 214-27.

Waters, L., Nix, C., Epler, J., 1982. Dimethylnitrosamine demethylase activity in Drosophila melanogaster. Biochem Biophys Res Commun 106, 779-785.

Waters, L., Nix, C., Solden, K., Epler, J., 1984. Effects of genotype and age on mixed-function oxidase activities in adult Drosophila melanogaster. Mutat Res 139, 51-55.

Waters, L., Simms, S., Nix, C., 1984. Natural variation in the expression of cytochrome P-450 and dimethylnitrosamine demethylase in Drosophila. Biochem Biophys Res Commun 123, 907-913.

Wee, C., Lee, S., Robin, C., Heckel, D., 2008. Identification of candidate genes for fenvalerate resistance in Helicoverpa armigera using cDNA-AFLP. Insect Mol Biol 17, 351-360.

Weedall, G.D., Riveron, J.M., Hearn, J., Irving, H., Kamdem, C., Fouet, C., White, B.J., Wondji, C.S., 2020. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genet 16, e1008822. https://doi.org/10.1371/journal.pgen.1008822

Weetman, D., Djogbenou, L.S., Lucas, E., 2018. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? Current Opinion in Insect Science 27, 82–88. https://doi.org/10.1016/j.cois.2018.04.005

Wei, J., Shao, W., Cao, M., Ge, J., Yang, P., Chen, L., Wang, X., Kang, L., 2019. Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor. Sci. Adv. 5, eaav5495. https://doi.org/10.1126/sciadv.aav5495

Wei, L., Lianjun, Z., Ning, L., Xiwu, G., Xiaoning, L., 2021. Effect of RNAi targeting CYP6CY3 on the growth, development and insecticide susceptibility of Aphis gossypii by using nanocarrier-based transdermal dsRNA delivery system. Pesticide Biochemistry and Physiology 177, 104878. https://doi.org/10.1016/j.pestbp.2021.104878

Wei, X., Hu, J., Yang, J., Yin, C., Du, T., Huang, M., Fu, B., Gong, P., Liang, J., Liu, S., Xue, H., He, C., Ji, Y., Du, H., Zhang, R., Wang, C., Li, J., Yang, X., Zhang, Y., 2023. Cytochrome P450 CYP6DB3 was involved in thiamethoxam and imidacloprid resistance in Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology 194, 105468. https://doi.org/10.1016/j.pestbp.2023.105468

Weirich, G.F., Williams, V.P. and Feldlaufer, M.F. 1996. Ecdysone 20-hydroxylation in Manduca sexta midgut: kinetic parameters of mitochondrial and microsomal ecdysone 20-monooxygenases. Arch. Insect Biochem. Physiol., 31, 305-312.

Wen, D., Rivera-Perez, C., Abdou, M., Jia, Q., He, Q., Liu, X., Zyaan, O., Xu, J., Bendena, W.G., Tobe, S.S., Noriega, F.G., Palli, S.R., Wang, J., Li, S., 2015. Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis. PLoS Genet 11, e1005038. https://doi.org/10.1371/journal.pgen.1005038

Wen, X., Feng, K., Qin, J., Wei, P., Cao, P., Zhang, Y., Yuchi, Z., He, L., 2023. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). PLoS Genet 19, e1010911. https://doi.org/10.1371/journal.pgen.1010911

Wen, Z., Scott, J., 2001. Cloning of two novel P450 cDNAs from German cockroaches, Blattella germanica (L.): CYP6K1 and CYP6J1. Insect Mol Biol 10, 131-137.

Wen, Z., Scott, J., 2001. Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica (L.). Insect Biochem Mol Biol 31, 179-187.

Wen, Z., Baudry, J., Berenbaum, M., Schuler, M., 2005. Ile115Leu mutation in the SRS1 region of an insect cytochrome P450 (CYP6B1) compromises substrate turnover via changes in a predicted product release channel. Protein Eng Des Sel 18, 191-199.

Wen, Z., Berenbaum, M., Schuler, M., 2006. Inhibition of CYP6B1-mediated detoxification of xanthotoxin by plant allelochemicals in the black swallowtail (Papilio polyxenes). J Chem Ecol 32, 507-522.

Wen, Z., Horak, C. E., Scott, J. G. 2001. CYP9E2, CYP4C21 and related pseudogenes from German cockroaches, Blattella germanica: implications for molecular evolution, expression studies and nomenclature of P450s. Gene 272, 257-66.

Wen, Z., Pan, L., Berenbaum, MB, Schuler, MA 2003. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochem Mol Biol 33, 937-947.

Wen, Z., Rupasinghe, S., Niu, G., Berenbaum, M., Schuler, M., 2006. CYP6B1 and CYP6B3 of the black swallowtail (Papilio polyxenes): adaptive evolution through subfunctionalization. Mol Biol Evol 23, 2434-2443.

Wen Z, Zeng RS, Niu G, Berenbaum MR, Schuler MA 2009. Ecological significance of induction of broad substrate cytochrome P450s by natural and synthetic inducers in Helicoverpa zea. J Chem Ecol, 35:183–189.

Wen Z, Li K, Xu W, Zhang Z, Liang N, Chen M, Guo L. 2023. Role of miR-276-3p in the cyantraniliprole resistance mechanism of Bemisia tabaci via CYP6CX3 targeting. Int J Biol Macromol. 254:127830. https://doi.org/10.1016/j.ijbiomac.2023.127830

Werck-Reichhart D, Feyereisen R. 2000. Cytochromes P450: a success story. Genome Biology 1: REVIEWS3003. https://doi.org/10.1186/gb-2000-1-6-reviews3003

Wheeler, G.S., Slansky, F., Yu, S.J., 1993. Fall armyworm sensitivity to flavone: Limited role of constitutive and induced detoxifying enzyme activity. J Chem Ecol 19, 645–667. https://doi.org/10.1007/BF00984999

Wheelock, G., Scott, J., 1989. Simultaneous purification of a cytochrome P-450 and cytochrome b5 from the house fly, Musca domestica L. Insect Biochem 19, 481-488.

Wheelock, G.D. and Scott, J.G. 1990. Immunological Detection of Cytochrome P450 from Insecticide Resistant and Susceptible House Flies (Musca domestica). Pestic. Biochem. Physiol., 38, 130-139.

Wheelock, G.D. and Scott, J.G. 1992. Anti-P450lpr antiserum inhibits specific monooxygenase activities in LPR house fly microsomes. J Exp Zool, 264, 153-8.

Wheelock, G.D. and Scott, J.G. 1992. The role of cytochrome P450 in deltamethrin metabolism by pyrethroid-resistant and susceptible strains of House Flies. Pestic. Biochem. Physiol., 43, 67-77.

White, R., Franklin, R.T., Agosin, M., 1979. Conversion of a-pinene to a-pinene Oxide by Rat Liver and the Bark Beetle Dendroctonus terebrans Microsomal Fractions. Pesticide Biochemistry and Physiology 10,233-242.

Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, et al. 2011. Episodic radiations in the fly tree of life. Proc Natl Acad Sci USA 108: 5690-5695

Wilding, C.S., 2018. Regulating resistance: CncC:Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Current Opinion in Insect Science 27, 89–96. https://doi.org/10.1016/j.cois.2018.04.006

Wilding, C.S., Smith, I., Lynd, A., Yawson, A.E., Weetman, D., Paine, M.J.I., Donnelly, M.J., 2012. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection. Insect Biochemistry and Molecular Biology 42, 699–707. https://doi.org/10.1016/j.ibmb.2012.06.003

Wilkinson, C.F., Brattsten, L.B., 1972. Microsomal Drug Metabolizing Enzymes in Insects. Drug Metabolism Reviews 1, 153–227. https://doi.org/10.3109/03602537208993912

Wilkinson, C.F. 1979.) The use of insect subcellular components for studying the metabolism of xenobiotics. ACS Symposium Series, 97, 249-284

Williams D, Fisher M, Rees H. 2000. Characterization of ecdysteroid 26-hydroxylase: an enzyme involved in molting hormone inactivation. Arch Biochem Biophys 376: 389-398

Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. 2000. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5, 121-31.

Willingham, A., Keil, T., 2004. A tissue specific cytochrome P450 required for the structure and function of Drosophila sensory organs. Mech Dev 121, 1289-1297.

Willoughby, L., Batterham, P., Daborn, P., 2007. Piperonyl butoxide induces the expression of cytochrome P450 and glutathione S-transferase genes in Drosophila melanogaster. Pest Manag Sci.

Willoughby, L., Chung, H., Lumb, C., Robin, C., Batterham, P., Daborn, P., 2006. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36, 934-942.

Wilson, T.G. 2001. Resistance of Drosophila to toxins. Annu Rev Entomol, 46, 545-71.

Winter, J., Bilbe, G., Richener, H., Sehringer, B., Kayser, H., 1999. Cloning of a cDNA Encoding a Novel Cytochrome P450 from the Insect Locusta migratoria: CYP6H1, a Putative Ecdysone 20-Hydroxylase. Biochemical and Biophysical Research Communications 259, 305–310. https://doi.org/10.1006/bbrc.1999.0783 [but see Marchal et al., 2012]

Winter, J., Eckerskorn, C., Waditschatka, R. and Kayser, H. 2001. A microsomal ecdysone-binding cytochrome P450 from the insect Locusta migratoria purified by sequential use of type-II and type-I ligands. Biol Chem, 382, 1541-9.

Wipf, N.C., Duchemin, W., Kouadio, F.-P.A., Fodjo, B.K., Sadia, C.G., Mouhamadou, C.S., Vavassori, L., Mäser, P., Mavridis, K., Vontas, J., Müller, P., 2022. Multi-insecticide resistant malaria vectors in the field remain susceptible to malathion, despite the presence of Ace1 point mutations. PLoS Genet 18, e1009963. https://doi.org/10.1371/journal.pgen.1009963

Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer C, Bartel D, Buckley TR, Donath A, Edgerly-Rooks JS, Fujita M,et al. 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc Natl Acad Sci USA 116: 3024-3029

Witzig, C., Parry, M., Morgan, J.C., Irving, H., Steven, A., Cuamba, N., Kerah-Hinzoumbé, C., Ranson, H., Wondji, C.S., 2013. Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity 110, 389–397. https://doi.org/10.1038/hdy.2012.112

Wojtasek, H., Leal, W.S., 1999. Degradation of an alkaloid pheromone from the pale‐brown chafer, Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. FEBS Letters 458, 333–336. https://doi.org/10.1016/S0014-5793(99)01178-3

Wondji, C.S., Hearn, J., Irving, H., Wondji, M.J., Weedall, G., 2022. RNAseq-based gene expression profiling of the Anopheles funestus pyrethroid-resistant strain FUMOZ highlights the predominant role of the duplicated CYP6P9a/b cytochrome P450s. G3 Genes|Genomes|Genetics 12, jkab352. https://doi.org/10.1093/g3journal/jkab352

Wondji, C.S., Irving, H., Morgan, J., Lobo, N.F., Collins, F.H., Hunt, R.H., Coetzee, M., Hemingway, J., Ranson, H., 2009. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus , a major malaria vector. Genome Res. 19, 452–459. https://doi.org/10.1101/gr.087916.108

Wu, C., Ding, C., Chen, S., Wu, X., Zhang, L., Song, Y., Li, W., Zeng, R., 2021. Exposure of Helicoverpa armigera Larvae to Plant Volatile Organic Compounds Induces Cytochrome P450 Monooxygenases and Enhances Larval Tolerance to the Insecticide Methomyl. Insects 12, 238. https://doi.org/10.3390/insects12030238

Wu, C., Zhang, F., Dewer, Y., Zhang, J., Li, F., 2023. Exploration of Candidate Genes Involved in the Biosynthesis, Regulation and Recognition of the Male-Produced Aggregation Pheromone of Halyomorpha halys. Insects 14, 163. https://doi.org/10.3390/insects14020163

Wu, H., Liu, J., Liu, Y., Abbas, M., Zhang, Y., Kong, W., Zhao, F., Zhang, X., Zhang, J., 2022. CYP6FD5, an antenna-specific P450 gene, is potentially involved in the host plant recognition in Locusta migratoria. Pesticide Biochemistry and Physiology 188, 105255. https://doi.org/10.1016/j.pestbp.2022.105255

Wu, H., Liu, Y., Shi, X., Zhang, X., Ye, C., Zhu, K.Y., Zhu, F., Zhang, J., Ma, E., 2020a. Transcriptome analysis of antennal cytochrome P450s and their transcriptional responses to plant and locust volatiles in Locusta migratoria. International Journal of Biological Macromolecules 149, 741–753. https://doi.org/10.1016/j.ijbiomac.2020.01.309

Wu, H., Wang, H., Li, R., Liu, Y., Zhang, Y., Chen, N., Kong, W., Zhao, F., Zhang, X., Zhang, J., 2023. Transcription factor CncC regulates the expression of antennal CYP6MU1 gene responsible for trans-2-hexen-1-al and nonanal recognition in Locusta migratoria. Pesticide Biochemistry and Physiology 196, 105620. https://doi.org/10.1016/j.pestbp.2023.105620

Wu, K., Hoy, M.A., 2016. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis. PLoS ONE 11, e0160009. https://doi.org/10.1371/journal.pone.0160009

Wu, L., Jia, Q., Zhang, Xubo, Zhang, Xueyao, Liu, S., Park, Y., Feyereisen, R., Zhu, K.Y., Ma, E., Zhang, J., Li, S., 2019. CYP303A1 has a conserved function in adult eclosion in Locusta migratoria and Drosophila melanogaster. Insect Biochemistry and Molecular Biology 113, 103210. https://doi.org/10.1016/j.ibmb.2019.103210

Wu, L., Li, L., Xu, Y., Li, Q., Liu, F., Zhao, H., 2022. Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida. Pest Management Science n/a. https://doi.org/10.1002/ps.7146

Wu, L., Yu, Z., Jia, Q., Zhang, X., Ma, E., Li, S., Zhu, K.Y., Feyereisen, R., Zhang, J., 2020a. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria. Pesticide Biochemistry and Physiology 168, 104637. https://doi.org/10.1016/j.pestbp.2020.104637

Wu, L., Zhang, Z., Yu, Z., Yu, R., Ma, E., Fan, Y., Liu, T., Feyereisen, R., Zhu, K.Y., Zhang, J., 2020b. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. Pest Manag Sci 76, 3541–3550. https://doi.org/10.1002/ps.5914

Wu, P., Huang, Y., Zheng, J., Zhang, Y., Qiu, L., 2023a. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. Pesticide Biochemistry and Physiology 197, 105707. https://doi.org/10.1016/j.pestbp.2023.105707

Wu, P., Zheng, J., Huang, Y., Zhang, Y., Qiu, L., 2023b. Effects of different insecticides on transcripts of key genes in CncC pathway and detoxification genes in Helicoverpa armigera. Pesticide Biochemistry and Physiology 195, 105541. https://doi.org/10.1016/j.pestbp.2023.105541

Wu, T., Dong, Q., Tang, X., Zhu, X., Deng, D., Ding, Y., Ahmad, S., Zhang, W., Mao, Z., Zhao, X., Ge, L., 2024. CYP303A1 regulates molting and metamorphosis through 20E signaling in Nilaparvata lugens Stål (Hemiptera: Delphacidae). International Journal of Biological Macromolecules 281, 136234. https://doi.org/10.1016/j.ijbiomac.2024.136234

Wu, X., Chen, Z., Fan, Y., Feng, J., Li, J., 2023. Genome-wide identification and expression analysis of cytochrome P450 gene family in Macrobrachium nipponense. Aquaculture and Fisheries S2468550X23001466. https://doi.org/10.1016/j.aaf.2023.12.004

Wu, Y., Xu, H., Pan, Y., Gao, X., Xi, J., Zhang, J., Shang, Q., 2018. Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover. Pesticide Biochemistry and Physiology 149, 1–7. https://doi.org/10.1016/j.pestbp.2018.05.007

Wu, Y., Zheng, H., Corona, M., Pirk, C., Meng, F., Zheng, Y., Hu, F., 2017. Comparative transcriptome analysis on the synthesis pathway of honey bee (Apis mellifera) mandibular gland secretions. Sci Rep 7, 4530. https://doi.org/10.1038/s41598-017-04879-z

Wu, Y., Zheng, Y., Chen, Yanan, Wang, S., Chen, Yanping, Hu, F., Zheng, H., 2020b. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 13, 1201–1212. https://doi.org/10.1111/1751-7915.13579

Wu, Y., Zheng, Y., Li-Byarlay, H., Shi, Y., Wang, S., Zheng, H., Hu, F., 2020c. CYP6AS8, a cytochrome P450, is associated with the 10-HDA biosynthesis in honey bee (Apis mellifera) workers. Apidologie 51, 1202–1212. https://doi.org/10.1007/s13592-019-00709-5

Wurmser, F., Mary-Huard, T., Daudin, J.-J., Joly, D., Montchamp-Moreau, C., 2013. Variation of Gene Expression Associated with Colonisation of an Anthropized Environment: Comparison between African and European Populations of Drosophila simulans. PLoS ONE 8, e79750. https://doi.org/10.1371/journal.pone.0079750

Wybouw, N., Kurlovs, A.H., Greenhalgh, R., Bryon, A., Kosterlitz, O., Manabe, Y., Osakabe, M., Vontas, J., Clark, R.M., Van Leeuwen, T., 2019. Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals. Proc. R. Soc. B. 286, 20191039. https://doi.org/10.1098/rspb.2019.1039

Xia, F., Luo, D., He, M., Wu, S., Zhao, X., Liao, X., 2022. The development, reproduction and P450 enzyme of the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae) under the sublethal concentrations of clothianidin. Ecotoxicology and Environmental Safety 246, 114188. https://doi.org/10.1016/j.ecoenv.2022.114188

Xia, T., Liu, Y., Lu, Z., Yu, H., 2023. Natural Coumarin Shows Toxicity to Spodoptera litura by Inhibiting Detoxification Enzymes and Glycometabolism. IJMS 24, 13177. https://doi.org/10.3390/ijms241713177

Xiao T, Wang W, Deng M, Yang Z, Peng H, Huang Z, Sun Z, Lu K. 2023. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Spodoptera litura. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.3c05423

Xiao, Q., Deng, L., Elzaki, M.E.A., Zhu, L., Xu, Y., Han, X., Wang, C., Han, Z., Wu, M., 2020. The Inducible CYP4C71 Can Metabolize Imidacloprid in Laodelphax striatellus (Hemiptera: Delphacidae). Journal of Economic Entomology 113, 399–406. https://doi.org/10.1093/jee/toz292

Xiao, T., Lu, K., 2022. Functional characterization of CYP6AE subfamily P450s associated with pyrethroid detoxification in Spodoptera litura. International Journal of Biological Macromolecules 219, 452–462. https://doi.org/10.1016/j.ijbiomac.2022.08.014

Xiao, X., Haas, J., Nauen, R., 2023. Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone. Ecotoxicology and Environmental Safety 268, 115719. https://doi.org/10.1016/j.ecoenv.2023.115719

Xiao, X., Roesner, J., Yoon, K.A., Cho, S., Lee, S.H., Haas, J., Nauen, R., 2024. Unveiling Molecular Mechanisms Mediating Coumaphos Tolerance in Western Honey Bees ( Apis mellifera ). J. Agric. Food Chem. acs.jafc.4c10195. https://doi.org/10.1021/acs.jafc.4c10195

Xie, X., Liu, Z., Liu, M., Tao, T., Shen, X., Zhu, D., 2016. Role of Halloween genes in ecdysteroids biosynthesis of the swimming crab (Portunus trituberculatus): Implications from RNA interference and eyestalk ablation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 199, 105–110. https://doi.org/10.1016/j.cbpa.2016.06.001

Xie, X., Wang, Q., Deng, Z., Gu, S., Liang, G., Li, X., 2024. Keap1 Negatively Regulates Transcription of Three Counter-Defense Genes and Susceptibility to Plant Toxin Gossypol in Helicoverpa armigera. Insects 15, 328. https://doi.org/10.3390/insects15050328

Xin, J., Brown, D., Wang, Y., Wang, X., Li, M., Li, T., Liu, N., 2024. Unveiling the Role of Two Rhodopsin-like GPCR Genes in Insecticide-Resistant House Flies, Musca domestica. IJMS 25, 10618. https://doi.org/10.3390/ijms251910618

Xin, Y., Chen, N., Wang, Y., Ni, R., Zhao, H., Yang, P., Li, M., Qiu, X., 2022. CYP4G8 is responsible for the synthesis of methyl-branched hydrocarbons in the polyphagous caterpillar of Helicoverpa armigera. Insect Biochemistry and Molecular Biology 140, 103701. https://doi.org/10.1016/j.ibmb.2021.103701

Xing, X., Yan, M., Pang, H., Wu, F., Wang, J., Sheng, S., 2021. Cytochrome P450s Are Essential for Insecticide Tolerance in the Endoparasitoid Wasp Meteorus pulchricornis (Hymenoptera: Braconidae). Insects 12, 651. https://doi.org/10.3390/insects12070651

Xiong, T., Yu, M., Zhu, J., Tian, K., Li, M., Qiu, X., 2024. Functional characterization of Helicoverpa assulta CYP6B6 in insecticide metabolism. Pesticide Biochemistry and Physiology 201, 105857. https://doi.org/10.1016/j.pestbp.2024.105857

Xiong, T., Yu, M., Li, M., Reilly, C.A., Qiu, X., 2025. CYP6B6 mediated adaptation to capsaicinoids in the generalist Helicoverpa armigera and specialist H. assulta: Transcriptional response and metabolic detoxification. International Journal of Biological Macromolecules 286, 138286. https://doi.org/10.1016/j.ijbiomac.2024.138286

Xiong, W., Gao, S., Mao, J., Wei, L., Xie, J., Liu, J., Bi, J., Song, X., Li, B., 2019. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. Pest. Manag. Sci. 75, 2744–2755. https://doi.org/10.1002/ps.5384

Xu, C., Fu, N., Cai, X., Li, Z., Bian, L., Xiu, C., Chen, Z., Ma, L., Luo, Z., 2024. Identification of Candidate Genes Associated with Type-II Sex Pheromone Biosynthesis in the Tea Geometrid (Ectropis obliqua) (Lepidoptera: Geometridae). Insects 15, 276. https://doi.org/10.3390/insects15040276

Xu, D., Liao, H., Li, L., Wu, M., Xie, W., Wu, Q., Zhang, Y., Zhou, X., Wang, S., 2023. The CYP392D8 gene is not directly associated with abamectin resistance, a case study in two highly resistant Tetranychus urticae strains. entomologia 43, 679–687. https://doi.org/10.1127/entomologia/2022/1646

Xu, D., Zhang, Yan, Zhang, Youjun, Wu, Q., Guo, Z., Xie, W., Zhou, X., Wang, S., 2021. Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Manag Sci 77, 1204–1213. https://doi.org/10.1002/ps.6130

Xu, J., Li, B., Jiang, Z., Wang, W., Yang, Y., Yang, M., Ye, X., 2023. Genomic analyses provide insights into the genome evolution and environmental adaptation of the tobacco moth Ephestia elutella. Front. Physiol. 14, 1187522. https://doi.org/10.3389/fphys.2023.1187522

Xu, J., Su, X., Bonizzoni, M., Zhong, D., Li, Y., Zhou, G., Nguyen, H., Tong, S., Yan, G., Chen, X.-G., 2018. Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Negl Trop Dis 12, e0006828. https://doi.org/10.1371/journal.pntd.0006828 [this is NOT CYP6A8]

Xu, L., Li, D.-Z., Luo, Y.-Y., Qin, J.-Y., Qiu, L.-H., 2018. Identification of the 2-tridecanone cis -acting element in the promoter of cytochrome P450 CYP6B7 in Helicoverpa armigera: 2-tridecanone cis-acting element of CYP6B7. Insect Science 25, 959–968. https://doi.org/10.1111/1744-7917.12479

Xu L, Li B, Liu H, Zhang H, Liu R, Yu H, Li D. 2022. CRISPR/Cas9-Mediated Knockout Reveals the Involvement of CYP304F1 in β-Cypermethrin and Chlorpyrifos Resistance in Spodoptera litura. J Agric Food Chem. 70,11192-11200. https://doi.org/10.1021/acs.jafc.2c04352.

Xu, L., Mei, Y., Liu, R., Chen, X., Li, D., Wang, C., 2020. Transcriptome analysis of Spodoptera litura reveals the molecular mechanism to pyrethroids resistance. Pesticide Biochemistry and Physiology 169, 104649. https://doi.org/10.1016/j.pestbp.2020.104649

Xu, L., Zhao, J., Sun, Y., Xu, D., Xu, G., Xu, X., Zhang, Y., Huang, S., Han, Z., Gu, Z., 2019. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker): P450s mediate chlorantraniliprole resistance in C. suppressalis. Pest. Manag. Sci. 75, 718–725. https://doi.org/10.1002/ps.5171

Xu, L., Zhao, J., Xu, D., Xu, G., Peng, Y., Zhang, Y., 2024. New insights into chlorantraniliprole metabolic resistance mechanisms mediated by the striped rice borer cytochrome P450 monooxygenases: A case study of metabolic differences. Science of The Total Environment 912, 169229. https://doi.org/10.1016/j.scitotenv.2023.169229

Xu, W., Liu, S., Zhang, Y., Gao, J., Yang, M., Liu, X., Tao, L., 2017. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. Pesticide Biochemistry and Physiology 142, 77–82. https://doi.org/10.1016/j.pestbp.2017.01.008

Xu, X.-L., Geng, L., Zeng, Z.-Y., Wu, Z., Li, L.-F., Tang, S.-H., Wang, Z.-J., Shi, H.-H., Li, Z.-G., Nie, H.-Y., Su, S.-K., 2024. CYP9Q1 Modulates Dopamine to Increase Sugar Responsiveness in Honeybees (Apis mellifera). IJMS 25, 13550. https://doi.org/10.3390/ijms252413550

Xu, X., Li, X., Liu, Z., Wang, F., Fan, L., Wu, C., Yao, Y., 2021. Knockdown of CYP301B1 and CYP6AX1v2 increases the susceptibility of the brown planthopper to beta-asarone, a potential plant-derived insecticide. International Journal of Biological Macromolecules 171, 150–157. https://doi.org/10.1016/j.ijbiomac.2020.12.217

Xu, Y., Du, J., Zhang, K., Li, J., Zou, F., Li, X., Meng, Y., Chen, Y., Tao, L., Zhao, F., Ma, L., Shen, B., Zhou, D., Sun, Y., Yan, G., Zhu, C., 2024. The Dual Resistance Mechanism of CYP325G4 and CYP6AA9 in Culex pipiens pallens Legs According to Transcriptome and Proteome Analysis. J. Agric. Food Chem. 72, 27150–27162. https://doi.org/10.1021/acs.jafc.4c05708

Xu, Z., Bai, J., Min, M., Cao, Jingyu, Zhang, Y., Li, L., Cao, Jingxin, Ma, X., Xu, Y., Ma, L., 2024. CncC-Keap1-P450s pathway is involved in the detoxification of emamectin benzoate in the spongy moth Lymantria dispar. Pesticide Biochemistry and Physiology 199, 105765. https://doi.org/10.1016/j.pestbp.2023.105765

Xu, Z., Wang, G., Luo, J., Zhu, M., Hu, L., Liang, S., Li, B., Huang, X., Wang, Y., Zhang, G., Zhang, C., Zhou, Y., Yuan, D., Chen, T., Chen, L., Ma, W., Gao, W., Lindsey, K., Zhang, X., Ding, F., Jin, S., 2023. The chromosome-scale reference genome of mirid bugs (Adelphocoris suturalis) genome provides insights into omnivory, insecticide resistance, and survival adaptation. BMC Biol 21, 195. https://doi.org/10.1186/s12915-023-01666-3

Xu, Z., Zhu, W., Liu, Y., Liu, X., Chen, Q., Peng, M., Wang, X., Shen, G., He, L., 2014. Analysis of Insecticide Resistance-Related Genes of the Carmine Spider Mite Tetranychus cinnabarinus Based on a De Novo Assembled Transcriptome. PLoS ONE 9, e94779. https://doi.org/10.1371/journal.pone.0094779

Xue, H., Fu, B., Huang, M., He, C., Liang, J., Yang, J., Wei, X., Liu, S., Du, T., Ji, Y., Yin, C., Gong, P., Hu, J., Du, H., Zhang, R., Wang, C., Khajehali, J., Su, Q., Yang, X., Zhang, Y., 2023. CYP6DW3 Metabolizes Imidacloprid to Imidacloprid-urea in Whitefly ( Bemisia tabaci ). J. Agric. Food Chem. 71, 2333–2343. https://doi.org/10.1021/acs.jafc.2c08353

Yainna, S., Nègre, N., Silvie, P.J., Brévault, T., Tay, W.T., Gordon, K., dAlençon, E., Walsh, T., Nam, K., 2021. Geographic Monitoring of Insecticide Resistance Mutations in Native and Invasive Populations of the Fall Armyworm. Insects 12, 468. https://doi.org/10.3390/insects12050468

Yamaguchi, T., Kuwahara, Y., Asano, Y., 2017. A novel cytochrome P450, CYP 3201B1, is involved in ( R )‐mandelonitrile biosynthesis in a cyanogenic millipede. FEBS Open Bio 7, 335–347. https://doi.org/10.1002/2211-5463.12170

Yamanaka, N., Honda, N., Osato, N., Niwa, R., Mizoguchi, A., Kataoka, H., 2007. Differential regulation of ecdysteroidogenic P450 gene expression in the silkworm, Bombyx mori. Bioscience, Biotechnology, and Biochemistry 71, 2808-2814.

Yamazaki, S., Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T. 1993. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P- 450s. J Biochem Tokyo 114, 652-7.

Yamazaki, Y., Kiuchi, M., Takeuchi, H., Kubo, T., 2011. Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. Insect Biochemistry and Molecular Biology 41, 283–293. https://doi.org/10.1016/j.ibmb.2011.01.005

Yang J, Fu B, Gong P, Zhang C, Wei X, Yin C, Huang M, He C, Du T, Liang J, Liu S, Ji Y, Xue H, Wang C, Hu J, Du H, Zhang R, Yang X, Zhang Y. 2023. CYP6CX2 and CYP6CX3 mediate thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). J Econ Entomol 116:1342-1351. https://doi.org/10.1093/jee/toad089

Yang, J., McCart, C., Woods, D.J., Terhzaz, S., Greenwood, K.G., ffrench-Constant, R.H., Dow, J.A.T., 2007. A Drosophila systems approach to xenobiotic metabolism. Physiological Genomics 30, 223–231. https://doi.org/10.1152/physiolgenomics.00018.2007

Yang, J., Park, J.S., Lee, H., Kwon, M., Kim, G.-H., Kim, J., 2018. Identification of a phosphine resistance mechanism in Rhyzopertha dominica based on transcriptome analysis. Journal of Asia-Pacific Entomology 21, 1450–1456. https://doi.org/10.1016/j.aspen.2018.11.012

Yang, J., Sun, L.-Y., Ma, R., Tang, R., Zhao, J.-Y., Cai, Q.-N., 2024. Various functions of detoxification enzymes against insecticides in Nilaparvata lugens selected by toxicity assays and RNAi methods. Pesticide Biochemistry and Physiology 202, 105939. https://doi.org/10.1016/j.pestbp.2024.105939

Yang, L., Xing, B., Li, F., Wang, L.K., Yuan, L., Mbuji, A.L., Peng, Z., Malhat, F., Wu, S., 2021. Full-length transcriptome analysis of Spodoptera frugiperda larval brain reveals detoxification genes. PeerJ 9, e12069. https://doi.org/10.7717/peerj.12069

Yang, M.L., Zhang, J.Z., Zhu, K.Y., Xuan, T., Liu, X.J., Guo, Y.P., Ma, E.B., 2009. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis(Meyen). Arch. Insect Biochem. Physiol. 71, 3-15.

Yang, P., Tanaka, H., Kuwano, E., Suzuki, K., 2008. A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai: Cloning and expression pattern in pharate first instar larvae in relation to diapause. Journal of Insect Physiology 54, 636–643. https://doi.org/10.1016/j.jinsphys.2008.01.001

Yang, T., Li, T., Feng, X., Li, M., Liu, S., Liu, N., 2021. Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 11, 9041. https://doi.org/10.1038/s41598-021-88121-x

Yang T, Liu N. 2011. Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One 6: e29418

Yang WY, Liu ZY, Zhu Y, Xiao Y, Xiao WF, Tang L, Dong ZQ, Pan MH, Lu C, Chen P. 2024. MicroRNA bmo-miR-31-5p inhibits apoptosis and promotes BmNPV proliferation by targeting the CYP9e2 gene of Bombyx mori. Pest Manag Sci. https://doi.org/10.1002/ps.8162. [this is not CYP9E2 but CYP9AJ1].

Yang, X., Deng, S., Wei, X., Yang, J., Zhao, Q., Yin, C., Du, T., Guo, Z., Xia, J., Yang, Z., Xie, W., Wang, S., Wu, Q., Yang, F., Zhou, X., Nauen, R., Bass, C., Zhang, Y., 2020. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc Natl Acad Sci USA 117, 10246–10253. https://doi.org/10.1073/pnas.1913603117

Yang, X., Hafeez, M., Chen, H.-Y., Li, W.-T., Ren, R.-J., Luo, Y.-S., Abdellah, Y.A.Y., Wang, R.-L., 2023. DIMBOA-induced gene expression, activity profiles of detoxification enzymes, multi-resistance mechanisms, and increased resistance to indoxacarb in tobacco cutworm, Spodoptera litura (Fabricius). Ecotoxicology and Environmental Safety 267, 115669. https://doi.org/10.1016/j.ecoenv.2023.115669

Yang, X., Wei, X., Yang, J., Du, T., Yin, C., Fu, B., Huang, M., Liang, J., Gong, P., Liu, S., Xie, W., Guo, Z., Wang, S., Wu, Q., Nauen, R., Zhou, X., Bass, C., Zhang, Y., 2021. Epitranscriptomic regulation of insecticide resistance. Sci. Adv. 7, eabe5903. https://doi.org/10.1126/sciadv.abe5903

Yang, X., Xie, W., Wang, S., Wu, Q., Pan, H., Li, R., Yang, N., Liu, B., Xu, B., Zhou, X., Zhang, Y., 2013. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China. Pesticide Biochemistry and Physiology 107, 343–350. https://doi.org/10.1016/j.pestbp.2013.10.002

Yang, X.-Q., Wang, W., Tan, X.-L., Wang, X.-Q., Dong, H., 2017. Comparative Analysis of Recombinant Cytochrome P450 CYP9A61 from Cydia pomonella Expressed in Escherichia coli and Pichia pastoris. J. Agric. Food Chem. 65, 2337–2344. https://doi.org/10.1021/acs.jafc.7b00372

Yang, Y., Yue, L., Chen, S., Wu, Y. 2008. Functional expression of Helicoverpa armigera CYP9A12 and CYP9A14 in Saccharomyces cerevisiae. Pestic Biochem Physiol 92, 101-105.

Yang, Y.-X., Yu, N., Zhang, J.-H., Zhang, Y.-X., Liu, Z.-W., 2018. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides: Neonicotinoid induction P450 expression. Insect Science 25, 401–408. https://doi.org/10.1111/1744-7917.12440

Yang, Z., Xiao, T., Deng, M., Wang, W., Peng, H., Lu, K., 2023. Nuclear receptors potentially regulate phytochemical detoxification in Spodoptera litura. Pesticide Biochemistry and Physiology 192, 105417. https://doi.org/10.1016/j.pestbp.2023.105417

Yang, Z., Yang, H., He, G., 2007. Cloning and characterization of two cytochrome P450 CYP6AX1 and CYP6AY1 cDNAs from Nilaparvata lugens Stal (Homoptera: Delphacidae). Arch Insect Biochem Physiol 64, 88-99.

Yang, Z., Zhang, Y., Liu, X., Wang, X., 2010. Two novel cytochrome P450 genes CYP6CS1 and CYP6CW1 from Nilaparvata lugens (Hemiptera: Delphacidae): cDNA cloning and induction by host resistant rice. Bull Entomol Res, 1-9.

Yang, Z. ‐M., Yu, N., Wang, S. ‐J., Korai, S.K., Liu, Z. ‐W., 2021. Characterization of ecdysteroid biosynthesis in the pond wolf spider, Pardosa pseudoannulata. Insect Mol Biol 30, 71–80. https://doi.org/10.1111/imb.12678

Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF. 2004. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem. 279:38091-4. https://doi.org/10.1074/jbc.C400293200

Yao, P.-H., Mobarak, S.H., Yang, M.-F., Hu, C.-X., 2025. Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation. BMC Genomics 26, 14. https://doi.org/10.1186/s12864-024-11185-2

Yi, G., Ba, R., Luo, J., Zou, L., Huang, M., Li, Y., Li, H., Li, X., 2023. Simultaneous Detection and Distribution of Five Juvenile Hormones in 58 Insect Species and the Absolute Configuration in 32 Insect Species. J. Agric. Food Chem. acs.jafc.3c01168. https://doi.org/10.1021/acs.jafc.3c01168

Yainna, S., Hilliou, F., Haenniger, S., d’Alençon, E., Brévault, T., Nam, K., 2024. Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes. BMC Genomics 25, 949. https://doi.org/10.1186/s12864-024-10845-7

Yan, Y., Le, Z.-J., Yang, H., Xu, K.-K., Li, C., Yang, W.-J., 2023. Halloween genes as optimal RNAi-based targets for controlling the cigarette beetle, Lasioderma serricorne. entomologia 43, 881–891. https://doi.org/10.1127/entomologia/2023/2033

Yang, Y., Chen, S., Wu, S., Yue, L., and Wu, Y. 2006. Constitutive overexpression of multiple cytochrome P450 genes associated with pyrethroid resistance in Helicoverpa armigera. J Econ Entomol 99, 1784-9.

Yang, Y., Wu, Y., Chen, S., Devine, G., Denholm, I., Jewess, P., Moores, G., 2004. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem Mol Biol 34, 763-773.

Yi, Y., Wu, G., 2024. RNA-seq analysis of LPS-induced immune priming in silkworms (Bombyx mori) and the role of cytochrome P450 detoxification system in the process. International Journal of Biological Macromolecules 283, 136551. https://doi.org/10.1016/j.ijbiomac.2024.136551

Yi, Y., Dou, G., Yu, Z., He, H., Wang, C., Li, L., Zhou, J., Liu, D., Shi, J., Li, G., Pang, L., Yang, N., Huang, Q., Qi, H., 2018. Z-Ligustilide Exerted Hormetic Effect on Growth and Detoxification Enzymes of Spodoptera litura Larvae. Evidence-Based Complementary and Alternative Medicine 2018, 1–10. https://doi.org/10.1155/2018/7104513

Yokoi, K., Nakamura, Y., Jouraku, A., Akiduki, G., Uchibori‐Asano, M., Kuwazaki, S., Suetsugu, Y., Daimon, T., Yamamoto, K., Noda, H., Sanada‐Morimura, S., Matsumura, M., Cuong, L.Q., Van Chien, H., Estoy, G.F., Shinoda, T., 2021. Genome‐wide assessment and development of molecular diagnostic methods for imidacloprid‐resistance in the brown planthopper, Nilaparvata lugens (Hemiptera; Delphacidae). Pest Management Science 77, 1786–1795. https://doi.org/10.1002/ps.6200

Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S., Suzuki, Y., 2017. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. Journal of Insect Physiology 101, 91–96. https://doi.org/10.1016/j.jinsphys.2017.07.006

Yoon, D.-S., Park, J.C., Park, H.G., Lee, J.-S., Han, J., 2019. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. Aquatic Toxicology 213, 105213. https://doi.org/10.1016/j.aquatox.2019.05.015

Yoon, K.S., Strycharz, J.P., Baek, J.H., Sun, W., Kim, J.H., Kang, J.S., Pittendrigh, B.R., Lee, S.H., Clark, J.M., 2011. Brief exposures of human body lice to sublethal amounts of ivermectin over‐transcribes detoxification genes involved in tolerance. Insect Molecular Biology 20, 687–699. https://doi.org/10.1111/j.1365-2583.2011.01097.x

Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, Shiomi K, Sasakura Y, Takahashi S, Asashima M, et al. 2011. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem 286: 25756-25762

You, C., Shan, C., Ma, Z., Zhang, Y., Zhao, R., Gao, X., 2021. The overexpression and variant of CYP6G4 associated with propoxur resistance in the housefly, Musca domestica L. Pest Manag Sci 77, 4321–4330. https://doi.org/10.1002/ps.6461

You, C., Zhang, Lulu, Song, J., Zhang, Lei, Zhen, C., Gao, X., 2023. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. International Journal of Biological Macromolecules 236, 123399. https://doi.org/10.1016/j.ijbiomac.2023.123399

Younus, F., Chertemps, T., Pearce, S.L., Pandey, G., Bozzolan, F., Coppin, C.W., Russell, R.J., Maïbèche-Coisne, M., Oakeshott, J.G., 2014. Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. Insect Biochemistry and Molecular Biology 53, 30–43. https://doi.org/10.1016/j.ibmb.2014.07.003

Yu, J., Hu, S., Ma, K., Sun, L., Hu, H., Zou, F., Guo, Q., Lei, Z., Zhou, D., Sun, Y., Zhang, D., Ma, L., Shen, B., Zhu, C., 2014. Ribosomal Protein S29 Regulates Metabolic Insecticide Resistance through Binding and Degradation of CYP6N3. PLoS ONE 9, e94611. https://doi.org/10.1371/journal.pone.0094611

Yu, L., Tang, W., He, W., Ma, X., Vasseur, L., Baxter, S.W., Yang, G., Huang, S., Song, F., You, M., 2015. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Sci Rep 5, 8952. https://doi.org/10.1038/srep08952

Yu, Q.-Y., Fang, S.-M., Zhang, Z., Jiggins, C.D., 2016. The transcriptome response of Heliconius melpomene larvae to a novel host plant. Mol Ecol 25, 4850–4865. https://doi.org/10.1111/mec.13826

Yu, S.J., 1982. Induction of microsomal oxidases by host plants in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 17, 59-67.

Yu, S.J. 1984. Interactions of allelochemicals with detoxication enzymes of insecticide-susceptible and resistant fall armyworms. Pestic. Biochem. Physiol., 22, 60-68.

Yu, S.J. 1986. Consequences of induction of foreign compound-metabolizing enzymes in insects. In: Molecular aspects of insect-plant interactions(ed. L.B. Brattsten and S. Ahmad), p. 211-255. Plenum.

Yu, S.J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsia gemmatalis) insect. J. Chem. Ecol., 13, 423-436.

Yu, S.J. 1995. Allelochemical stimulation of ecdysone 20-monoxygenase in fall armyworm larvae. Arch. Insect Biochem. Physiol., 28, 365-375.

Yu, S., 2004. Induction of detoxification enzymes by triazine herbicides in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic Biochem Physiol 80, 113-122.

Yu, S., Ing, R., 1984. Microsomal biphenyl hydroxylase of fall armyworm larvae and its induction by allelochemicals and host plants. Comp Biochem Physiol C 78, 145-152.

Yu, S., Terriere, L., 1974. A possible role for microsomal oxidases in metamorphosis and reproduction in the housefly. J Insect Physiol 20, 1901-1912.

Yu, S., Terriere, L., 1975. Activities of hormone metabolizing enzymes in house flies treated with some substituted urea growth regulators. Life Sci 17, 619-625.

Yu, S., Terriere, L., 1977. Esterase and oxidase activity of house fly microsomes against juvenile hormone analogues containing branched chain ester groups and its induction by phenobarbital. J Agric Food Chem 25, 1333-1336.

Yu, S., Terriere, L., 1977. Metabolism of [14C]hydroprene (ethyl 3,7,11-trimethyl-2,4- dodecadienoate) by microsomal oxidases and esterases from three species of diptera. J Agric Food Chem 25, 1076-1080.

Yu, S.-J., Wang, L., Ding, L.-L., Pan, Q., Li, S.-C., Liu, L., Cong, L., Ran, C., 2024. A down-regulated cytochrome P450 in Neoseiulus barkeri Hughes (Acari: Phytoseiidae) can dechlorinate and hydroxylate chlorpyrifos without producing chlorpyrifos-oxon. Journal of Hazardous Materials 476, 135163. https://doi.org/10.1016/j.jhazmat.2024.135163 [CYP3011T6 is wrongly called CYP3A6; CYP3110C1 is wrongly called CYP3A16; CYP3107A10 is wrongly called CYP3A24]

Yu, Z., Zhang, X., Wang, Y., Moussian, B., Zhu, K.Y., Li, S., Ma, E., Zhang, J., 2016. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Sci Rep 6, 29980. https://doi.org/10.1038/srep29980

Yuan, C., Jing, T., Li, W., Liu, X., Liu, T., Liu, Y., Chen, M., Jiang, R., Yuan, G., Dou, W., Wang, J., 2021. NADPH cytochrome P450 reductase mediates the susceptibility of Asian citrus psyllid Diaphorina citri to imidacloprid and thiamethoxam. Pest Manag Sci 77, 677–685. https://doi.org/10.1002/ps.6143

Yuan, H., Qiao, H., Fu, Y., Fu, H., Zhang, W., Jin, S., Gong, Y., Jiang, S., Xiong, Y., Hu, Y., Wu, Y., 2021. RNA interference shows that Spook, the precursor gene of 20-hydroxyecdysone (20E), regulates the molting of Macrobrachium nipponense. The Journal of Steroid Biochemistry and Molecular Biology 213, 105976. https://doi.org/10.1016/j.jsbmb.2021.105976

Yuan, X., Li, H., Guo, X., Jiang, H., Zhang, Q., Zhang, L., Wang, G., Li, W., Zhao, M., 2023. Functional roles of two novel P450 genes in the adaptability of Conogethes punctiferalis to three commonly used pesticides. Front. Physiol. 14, 1186804. https://doi.org/10.3389/fphys.2023.1186804

Yunta, C., Grisales, N., Nász, S., Hemmings, K., Pignatelli, P., Voice, M., Ranson, H., Paine, M.J.I., 2016. Pyriproxyfen is metabolized by P450s associated with pyrethroid resistance in An. gambiae. Insect Biochemistry and Molecular Biology 78, 50–57. https://doi.org/10.1016/j.ibmb.2016.09.001

Yunta, C., Hemmings, K., Stevenson, B., Koekemoer, L.L., Matambo, T., Pignatelli, P., Voice, M., Nász, S., Paine, M.J.I., 2019. Cross-resistance profiles of malaria mosquito P450s associated with pyrethroid resistance against WHO insecticides. Pesticide Biochemistry and Physiology 161, 61–67. https://doi.org/10.1016/j.pestbp.2019.06.007

Yunta, C., Ooi, J.M.F., Oladepo, F., Grafanaki, S., Pergantis, Spiros.A., Tsakireli, D., Ismail, H.M., Paine, M.J.I., 2023. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci Rep 13, 14124. https://doi.org/10.1038/s41598-023-41364-2

Zagrobelny, M., Jensen, M.K., Vogel, H., Feyereisen, R., Bak, S., 2018. Evolution of the Biosynthetic Pathway for Cyanogenic Glucosides in Lepidoptera. J Mol Evol 86, 379–394. https://doi.org/10.1007/s00239-018-9854-8

Zanni, V., Galbraith, D.A., Annoscia, D., Grozinger, C.M., Nazzi, F., 2017. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology 87, 1–13. https://doi.org/10.1016/j.ibmb.2017.06.002

Zeng, R., Niu, G., Wen, Z., Schuler, M., Berenbaum, M., 2006. Toxicity of Aflatoxin B1 to Helicoverpa zea and Bioactivation by Cytochrome P450 Monooxygenases. J Chem Ecol 32, 1459-1471.

Zeng, R.S., Wen, Z., Niu, G., Schuler, M.A., Berenbaum, M.R., 2007. Allelochemical Induction of Cytochrome P450 Monooxygenases and Amelioration of Xenobiotic Toxicity in Helicoverpa zea. J Chem Ecol 33, 449–461. https://doi.org/10.1007/s10886-006-9238-1

Zeng, R., Wen, Z., Niu, G., Schuler, M., Berenbaum, M., 2009. Enhanced toxicity and induction of cytochrome P450s suggest a cost of “eavesdropping” in a multitrophic interaction. J Chem Ecol 35, 526-532.

Zeng, T., Teng, F., Wei, H., Lu, Y., Xu, Y., Qi, Y., 2024. AANAT1 regulates insect midgut detoxification through the ROS/CncC pathway. Commun Biol 7, 808. https://doi.org/10.1038/s42003-024-06505-x

Zeng, X., Pan, Y., Tian, F., Li, J., Xu, H., Liu, X., Chen, X., Gao, X., Peng, T., Bi, R., Shang, Q., 2021. Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology 176, 104879. https://doi.org/10.1016/j.pestbp.2021.104879

Zhang, B., Zhang, L., Cui, R., Zeng, X., Gao, X., 2016. Cloning and Expression of Multiple Cytochrome P450 Genes: Induction by Fipronil in Workers of the Red Imported Fire Ant (Solenopsis invicta Buren). PLoS ONE 11, e0150915. https://doi.org/10.1371/journal.pone.0150915

Zhang, B.-Z., Jiang, Y.-T., Cui, L.-L., Hu, G.-L., Li, X.-A., Zhang, P., Ji, X., Ma, P.-C., Kong, F.-B., Liu, R.-Q., 2024. microRNA-3037 targeting CYP6CY2 confers imidacloprid resistance to Sitobion miscanthi (Takahashi). Pesticide Biochemistry and Physiology 202, 105958. https://doi.org/10.1016/j.pestbp.2024.105958

Zhang, B.-Z., Su, X., Xie, L.-F., Zhen, C.-A., Hu, G.-L., Jiang, K., Huang, Z.Y., Liu, R.-Q., Gao, Y.-F., Chen, X.-L., Gao, X.-W., 2020. Multiple detoxification genes confer imidacloprid resistance to Sitobion avenae Fabricius. Crop Protection 128, 105014. https://doi.org/10.1016/j.cropro.2019.105014

Zhang BZ, Hu GL, Lu LY, Chen XL, Gao XW. 2022. Silencing of CYP6AS160 in Solenopsis invicta Buren by RNA interference enhances worker susceptibility to fipronil. Bull Entomol Res.112, 171-178. https://doi.org/10.1017/S0007485321000651.

Zhang C, Du S, Liu R, Dai W. 2022. Overexpression of Multiple Cytochrome P450 Genes Conferring Clothianidin Resistance in Bradysia odoriphaga. J Agric Food Chem. 70,7636-7643. https://doi.org/10.1021/acs.jafc.2c01315.

Zhang C, Li Y, Qiu T, Wang Y, Wang H, Wang K, Dai W. 2024. Functional Characterization of CYP6QE1 and CYP6FV21 in Resistance to λ-Cyhalothrin and Imidacloprid in Bradysia odoriphaga. J Agric Food Chem.72:2925-2934. https://doi.org/10.1021/acs.jafc.3c08807

Zhang, C., Luo, X., Ni, X., Zhang, Y., Li, X., 2010. Functional characterization of cis-acting elements mediating flavone-inducible expression of CYP321A1. Insect Biochemistry and Molecular Biology 40, 898–908. https://doi.org/10.1016/j.ibmb.2010.09.003

Zhang, C., Wan, B., Jin, M.-R., Wang, J., Xin, T.-R., Zou, Z.-W., Xia, B., 2023. The loss of Halloween gene function seriously affects the development and reproduction of Diaphorina citri (Hemiptera: Liviidae) and increases its susceptibility to pesticides. Pesticide Biochemistry and Physiology 191, 105361. https://doi.org/10.1016/j.pestbp.2023.105361

Zhang, C., Wang, X., Tai, S., Qi, L., Yu, X., Dai, W., 2023. Transcription factor CncC potentially regulates cytochrome P450 CYP321A1-mediated flavone tolerance in Helicoverpa armigera. Pesticide Biochemistry and Physiology 191, 105360. https://doi.org/10.1016/j.pestbp.2023.105360

Zhang, C., Wong, A., Zhang, Y., Ni, X., Li, X., 2014. Common and unique cis-acting elements mediate xanthotoxin and flavone induction of the generalist P450 CYP321A1. Sci Rep 4, 6490. https://doi.org/10.1038/srep06490

Zhang H, Lin X, Yang B, Zhang L, Liu Z. 2024. Two Point Mutations in CYP4CE1 Promoter Contributed to the Differential Regulation of CYP4CE1 Expression by FoxO between Susceptible and Nitenpyram-Resistant Nilaparvata lugens. J Agric Food Chem. 72,1779-1786. https://doi.org/10.1021/acs.jafc.3c02495

Zhang, H., Tang, T., Cheng, Y., Shui, R., Zhang, W., Qiu, L., 2010. Cloning and expression of cytochrome P450 CYP6B7 in fenvalerate-resistant and susceptible Helicoverpa armigera (Hübner) from China. Journal of Applied Entomology 134, 754-761.

Zhang, H., Yang, H., Dong, W., Gu, Z., Wang, C., Chen, A., Shi, X., Gao, X., 2022. Mutations in the nAChR β1 subunit and overexpression of P450 genes are associated with high resistance to thiamethoxam in melon aphid, Aphis gossypii Glover. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 258, 110682. https://doi.org/10.1016/j.cbpb.2021.110682

Zhang, H., Gao, H., Lin, X., Yang, B., Wang, J., Yuan, X., Zhang, Z., He, T., Liu, Z., 2024. Akt-FoxO signaling drives co-adaptation to insecticide and host plant stresses in an herbivorous insect. Journal of Advanced Research S2090123224004983. https://doi.org/10.1016/j.jare.2024.11.006

Zhang, J., Zhang, Y., Wang, Y., Yang, Y., Cang, X., Liu, Z., 2016. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis. Pesticide Biochemistry and Physiology 132, 59–64. https://doi.org/10.1016/j.pestbp.2015.10.016

Zhang, J.-H., Zhao, M., Zhou, Y.-J., Xu, Q.-F., Yang, Y.-X., 2021. Cytochrome P450 Monooxygenases CYP6AY3 and CYP6CW1 Regulate Rice Black-Streaked Dwarf Virus Replication in Laodelphax striatellus (Fallén). Viruses 13, 1576. https://doi.org/10.3390/v13081576

Zhang, H., Zhang, Z., Zhang, Y., Zhang, X., Liu, Z., 2024. CYP4CE1 Metabolized Nitenpyram through Two Types of Oxidation Reaction, Hydroxylation, and N-Demethylation. J. Agric. Food Chem. 72, 20122–20129. https://doi.org/10.1021/acs.jafc.4c06273

Zhang, H., Zou, J., Yang, B., Zhang, Y., Liu, Z., 2023. Importance of CYP6ER1 Was Different among Neonicotinoids in Their Susceptibility in Nilaparvata lugens. J. Agric. Food Chem. 71, 4163–4171. https://doi.org/10.1021/acs.jafc.2c07692

Zhang, L., Harada, K. and Shono, T. 1997. Genetic analysis of pyriproxifen resistance in the housefly, Musca domestica L. Appl. Ent. Zool., 32, 217-226.

Zhang, L., Kasai, S. and Shono, T. 1998. In vitro metabolism of pyriproxyfen by microsomes from susceptible and resistant housefly larvae. Arch. Insect Biochem. Physiol., 37, 215-24.

Zhang, L., Liu, X., Wang, C., Cheng, G., Wu, Y., 2010. Expression, purification and direct eletrochemistry of cytochrome P450 6A1 from the house fly, Musca domestica. Protein Expr Purif 71, 74-78.

Zhang, L., Lu, Y., Xiang, M., Shang, Q., Gao, X., 2016. The retardant effect of 2-Tridecanone, mediated by Cytochrome P450, on the Development of Cotton bollworm, Helicoverpa armigera. BMC Genomics 17, 954. https://doi.org/10.1186/s12864-016-3277-y

Zhang, L., Lv, S., Li, M., Gu, M., Gao, X., 2022. A General Signal Pathway to Regulate Multiple Detoxification Genes Drives the Evolution of Helicoverpa armigera Adaptation to Xenobiotics. IJMS 23, 16126. https://doi.org/10.3390/ijms232416126

Zhang, M. and Scott, J.G. 1994. Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in house fly microsomes. Arch. Insect Biochem. Physiol., 27, 205-16.

Zhang, M., Scott, J.G., 1996. Cytochrome b5 is Essential for Cytochrome P450 6D1-Mediated Cypermethrin Resistance in LPR House Flies. Pesticide Biochemistry and Physiology 55, 150–156. https://doi.org/10.1006/pest.1996.0044

Zhang, M, Scott, J. G. 1996. Purification and characterization of cytochrome b5 reductase from the house fly, Musca domestica. Comp. Biochem. Physiol. 113B, 175-83.

Zhang, M.-Y., Zhang, P., Su, X., Guo, T.-X., Zhou, J.-L., Zhang, B.-Z., Wang, H.-L., 2022. MicroRNA-190-5p confers chlorantraniliprole resistance by regulating CYP6K2 in Spodoptera frugiperda (Smith). Pesticide Biochemistry and Physiology 184, 105133. https://doi.org/10.1016/j.pestbp.2022.105133 [this is not CYP6K2 but CYP324A18]

Zhang, Q., Tang, J., Gao, B., Qu, C., Wang, J., Luo, C., Wang, R., 2024. Overexpression of CYP6CX4 contributing to field-evolved resistance to flupyradifurone, one novel butenolide insecticide, in Bemisia tabaci from China. International Journal of Biological Macromolecules 265, 131056. https://doi.org/10.1016/j.ijbiomac.2024.131056

Zhang, T., Gong, C., Pu, J., Peng, A., Li, X., Wang, Y., Wang, X., 2023. Enhancement of tolerance against flonicamid in Solenopsis invicta (Hymenoptera: Formicidae) through overexpression of CYP6A14. Pesticide Biochemistry and Physiology 197, 105651. https://doi.org/10.1016/j.pestbp.2023.105651 [ this is not CYP6A14 but CYP6AS161]

Zhang, T., Gong, C., Pu, J., Peng, A., Yang, J., Wang, X., 2025. Enhancement of Tolerance against Flonicamid in Solenopsis invicta Queens through Overexpression of CYP6AQ83. J. Agric. Food Chem. 73, 237–248. https://doi.org/10.1021/acs.jafc.4c08903

Zhang, R., Kang, K.-D., Shan, G., Hammock, B., 2003. Design, synthesis and evaluation of novel P450 fluorescent probes bearing [alpha]-cyanoether. Tetrahedron Letters 44, 4331-4334.

Zhang, W., Yao, Y., Wang, H., Liu, Z., Ma, L., Wang, Y., Xu, B., 2019. The Roles of Four Novel P450 Genes in Pesticides Resistance in Apis cerana cerana Fabricius: Expression Levels and Detoxification Efficiency. Front. Genet. 10, 1000. https://doi.org/10.3389/fgene.2019.01000

Zhang, X., Dong, J., Wu, H., Zhang, H., Zhang, J., Ma, E., 2019. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria. Chemosphere 223, 48–57. https://doi.org/10.1016/j.chemosphere.2019.02.011

Zhang, X., He, Q., Zhang, T., Wu, H., Zhang, J., Ma, E., 2021. Characteristics of Halloween genes and RNA interference‐mediated functional analysis of LmCYP307a2 in Locusta migratoria. Insect Science 29, 51–64. https://doi.org/10.1111/1744-7917.12907

Zhang, X., Kang, X., Wu, H., Silver, K., Zhang, J., Ma, E., Zhu, K.Y., 2018. Transcriptome-wide survey, gene expression profiling and exogenous chemical-induced transcriptional responses of cytochrome P450 superfamily genes in migratory locust (Locusta migratoria). Insect Biochemistry and Molecular Biology 100, 66–77. https://doi.org/10.1016/j.ibmb.2018.06.006

Zhang, X., Liu, M., Cheng, A., Moussian, B., Zhang, J., Dong, W., 2024. Role of CYP311A1 in wing development of Drosophila melanogaster. Insect Science 1744-7917.13342. https://doi.org/10.1111/1744-7917.13342

Zhang, X., Liu, X., Ma, J., Zhao, J., 2013. Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm ( Helicoverpa armigera ) by RNAi. Bull. Entomol. Res. 103, 584–591. https://doi.org/10.1017/S0007485313000151

Zhang, X., Shi, Z., Yang, C., Li, J., Liu, J., Zhang, A., 2022. Gut transcriptome analysis of P450 genes and cytochrome P450 reductase in three moth species feeding on gymnosperms or angiosperms. Front. Ecol. Evol. 10, 948043. https://doi.org/10.3389/fevo.2022.948043

Zhang, X., Wang, J., Liu, J., Li, Y., Liu, X., Wu, H., Ma, E., Zhang, J., 2017. Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria. Chemosphere 188, 517–524. https://doi.org/10.1016/j.chemosphere.2017.08.157

Zhang, Y., Feng, Z.-J., Chen, Z.-S., Wang, X.-X., Cong, H.-S., Fan, Y.-L., Liu, T.-X., 2021. Connection between cuticular hydrocarbons and melanization in Harmonia axyridis revealed by RNAi-mediated silencing of the CYP4G79. entomologia 41, 83–96. https://doi.org/10.1127/entomologia/2020/0970

Zhang, Y., Gao, S., Xue, S., An, S., Zhang, K., 2021. Disruption of the cytochrome P450 CYP6BQ7 gene reduces tolerance to plant toxicants in the red flour beetle, Tribolium castaneum. International Journal of Biological Macromolecules 172, 263–269. https://doi.org/10.1016/j.ijbiomac.2021.01.054

Zhang, Y., Guo, H., Yang, Q., Li, S., Wang, L., Zhang, G., Fang, J., 2012. Overexpression of a P450 gene (CYP6CW1) in buprofezin-resistant Laodelphax striatellus (Fallén). Pesticide Biochemistry and Physiology 104, 277–282. https://doi.org/10.1016/j.pestbp.2012.10.002

Zhang, Y., Ju, F., 2023. Uninheritable but widespread bacterial symbiont mediates insecticide detoxification of an agricultural invasive pest Spodoptera frugiperda (preprint). Microbiology. https://doi.org/10.1101/2023.09.26.559648

Zhang, Y., Li, H., Yuan, S., Wu, H., Liu, X., Zhang, J., 2023. NADPH–cytochrome P450 reductase knockdown decreases the response to precocene I in the migratory locust Locusta migratoria. Pesticide Biochemistry and Physiology 105337. https://doi.org/10.1016/j.pestbp.2023.105337

Zhang, Y., Pan, X., Shi, T., Gu, Z., Yang, Z., Liu, M., Xu, Y., Yang, Y., Ren, L., Song, X., Lin, H., Deng, K., 2023. P450Rdb: A manually curated database of reactions catalyzed by cytochrome P450 enzymes. Journal of Advanced Research S2090123223003168. https://doi.org/10.1016/j.jare.2023.10.012

Zhang, Y.-C., Gao, Y., Ye, W.-N., Peng, Y.-X., Zhu, K.Y. and Gao, C.-F. 2023. CRISPR/Cas9-mediated knockout of NlCYP6CS1 gene reveals its role in detoxification of insecticides in Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci, 79: 2239-2246. https://doi.org/10.1002/ps.7404

Zhang YX, Tan Q, Jin L, Li GQ. 2024. Molecular characterization of the cytochrome P450 enzyme CYP18A1 in Henosepilachna vigintioctopunctata. Arch Insect Biochem Physiol. 115:e22111. https://doi.org/10.1002/arch.22111.

Zhang, Y., Wang, Y., Ma, Z., Zhai, D., Gao, X., Shi, X., 2019. Cytochrome P450 monooxygenases-mediated sex-differential spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Pesticide Biochemistry and Physiology 157, 178–185. https://doi.org/10.1016/j.pestbp.2019.03.024

Zhu, Y.C. and Snodgrass, G.L. 2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol. Biol., 12, 39-49.

Zhang, Yueliang, Wang, Y., Wang, L., Yao, J., Guo, H., Fang, J., 2016. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén). Pesticide Biochemistry and Physiology 127, 21–27. https://doi.org/10.1016/j.pestbp.2015.08.006

Zhang, Yixi, Yang, B., Yang, Z., Kai, L., Liu, Z., 2023. Alternative Splicing and Expression Reduction of P450 Genes Mediating the Oxidation of Chlorpyrifos Revealed a Novel Resistance Mechanism in Nilaparvata lugens. J. Agric. Food Chem. 71, 4036–4042. https://doi.org/10.1021/acs.jafc.2c08957

Zhang, Yixi, Yang, Y., Sun, H., Liu, Z., 2016. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes. Insect Biochemistry and Molecular Biology 79, 50–56. https://doi.org/10.1016/j.ibmb.2016.10.009

Zhang, Z., Pei, P., Zhang, M., Li, F., Tang, G., 2023. Chromosome‐level genome assembly of Dastarcus helophoroides provides insights into CYP450 genes expression upon insecticide exposure. Pest Management Science 79, 1467–1482. https://doi.org/10.1002/ps.7319 [CYP4174B1 is wrongly called CYP6A14X1; CYP4Q85 is wrongly called CYP4Q; CYP4ABT1 is wrongly called CYP4C1]

Zhang, Z., Wang, D., Shan, Y., Chen, J., Hu, H., Song, X. et al. 2023. Knockdown of CYP9A9 increases the susceptibility to lufenuron, methoxyfenozide and a mixture of both in Spodoptera exigua. Insect Molecular Biology, 32, 263–276. https://doi.org/10.1111/imb.12829

Zhang, Z., Wen, Z., Li, K., Xu, W., Liang, N., Yu, X., Li, C., Chu, D., Guo, L., 2022. Cytochrome P450 Gene, CYP6CX3, Is Involved in the Resistance to Cyantraniliprole in Bemisia tabaci. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.2c04699

Zhao, C., Feng, X., Tang, T., Qiu, L., 2015. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae). J Insect Sci 15, 122. https://doi.org/10.1093/jisesa/iev100

Zhao, C., Song, G., Duan, H., Tang, T., Wang, C., Qiu, L., 2017. Heterologous expression of Helicoverpa armigera cytochrome P450 CYP6B7 in Pichia pastoris and interactions of CYP6B7 with insecticides Pest. Manag. Sci 73, 1866–1872. https://doi.org/10.1002/ps.4552

Zhao, C., Song, G., Silver, K., Tang, T., Wang, C., Qiu, L., 2018. Heterologous Co-expression of CYP6B7 and NADPH-Dependent Cytochrome P450 Reductase From Helicoverpa armigera (Lepidoptera: Noctuidae) in Pichia pastoris. Journal of Economic Entomology 111, 1868–1874. https://doi.org/10.1093/jee/toy116

Zhao, C., Tang, T., Feng, X., Qiu, L., 2014. Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera: Cloning and characterisation of CPR gene in H. armigera. Pest. Manag. Sci. 70, 130–139. https://doi.org/10.1002/ps.3538

Zhao, C., Tang, T., Liu, J., Feng, X., Qiu, L., 2012. Identification and expression analysis of NADH-cytochrome b5 reductase gene in the cotton bollworm, Helicoverpa armigera. Gene 511, 96–102. https://doi.org/10.1016/j.gene.2012.09.007

Zhao, G., Zhao, S., Gao, R., Wang, R., Zhang, T., Ding, H., Li, B., Lu, C., Shen, W., Wei, Z., 2011. Transcription profiling of eight cytochrome P450s potentially involved in xenobiotic metabolism in the silkworm, Bombyx mori. Pesticide Biochemistry and Physiology 100, 251–255. https://doi.org/10.1016/j.pestbp.2011.04.009

Zhao, J., Liu, X.N., Li, F., Zhuang, S.Z., Huang, L.N., Ma, J., Gao, X.W., 2016. Yeast one-hybrid screening the potential regulator of CYP6B6 overexpression of Helicoverpa armigera under 2-tridecanone stress. Bull. Entomol. Res. 106, 182–190. https://doi.org/10.1017/S0007485315000942

Zhao, J., Wei, Q., Gu, X., Ren, S., Liu, X., 2020. Alcohol dehydrogenase 5 of Helicoverpa armigera interacts with the CYP6B6 promoter in response to 2‐tridecanone. Insect Science 27, 1053–1066. https://doi.org/10.1111/1744-7917.12720

Zhao, L., Wang, C., Gao, X., Luo, J., Zhu, X., Wan, S., 2022. Characterization of P450 monooxygenase gene family in the cotton aphid, Aphis gossypii Glover. Journal of Asia-Pacific Entomology 25, 101861. https://doi.org/10.1016/j.aspen.2021.101861

Zhao, M., Zhang, F., Wang, W., Liu, Z., Ma, C., Fu, Y., Chen, W., Ma, L., 2022. Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab, Scylla paramamosain. IJMS 23, 9451. https://doi.org/10.3390/ijms23169451

Zhao, N., He, W., Hu, H., Lv, X., Yu, F., Ji, R., Ye, X., 2024. Effect of RNAi mediated silencing of DIB , JHE , and CAM on the diapause termination of Calliptamus italicus (Orthoptera: Acrididae) eggs. Pest Management Science 80, 5780–5790. https://doi.org/10.1002/ps.8308

Zhao, P., Xue, H., Zhu, X., Wang, L., Zhang, K., Li, D., Ji, J., Niu, L., Gao, X., Luo, J., Cui, J., 2022a. Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura. International Journal of Biological Macromolecules 194, 895–902. https://doi.org/10.1016/j.ijbiomac.2021.11.144

Zhao, P., Xue, H., Zhu, X., Wang, L., Zhang, K., Li, D., Ji, J., Niu, L., Gao, X., Luo, J., Cui, J., 2022b. Knockdown of cytochrome P450 gene CYP6AB12 based on nanomaterial technology reduces the detoxification ability of Spodoptera litura to gossypol. Pesticide Biochemistry and Physiology 188, 105284. https://doi.org/10.1016/j.pestbp.2022.105284

Zhao, X., Chen, X., He, M., Wu, S., Shi, Y., Luo, D., Zhang, H., Wang, Z., Wan, H., Li, R., Li, J., Li, M., Liao, X., 2025. miRNAs modulate altered expression of cytochrome P450s and nicotinic acetylcholine receptor subunits conferring both metabolic and target resistance to sulfoxaflor in Nilaparvata lugens (Stål). International Journal of Biological Macromolecules 290, 138992. https://doi.org/10.1016/j.ijbiomac.2024.138992

Zhao, X., Wu, H., Yue, S., Chen, X., Huang, Y., Cao, H., Liao, M., 2023. Role of CYP6MS subfamily enzymes in detoxification of Sitophilus zeamais after exposure to terpinen-4-ol and limonene. Pesticide Biochemistry and Physiology 193, 105426. https://doi.org/10.1016/j.pestbp.2023.105426

Zhao, Z., Zhang, L., Zhang, Y., Mao, L., Zhu, L., Liu, X., Jiang, H., 2023. Transcriptome-Wide Identification of Cytochrome P450s and GSTs from Spodoptera exigua Reveals Candidate Genes Involved in Camptothecin Detoxification. Agriculture 13, 1494. https://doi.org/10.3390/agriculture13081494

Zhen, C., Wu, R., Tan, Y., Zhang, A., Zhang, L., 2024. NADPH-cytochrome P450 reductase involved in the lambda-cyhalothrin susceptibility on the green mirid bug Apolygus lucorum. Bull. Entomol. Res. 1–8. https://doi.org/10.1017/S0007485324000488

Zheng, J., Tian, K., Yuan, Y., Li, M., Qiu, X., 2017. Identification and expression patterns of Halloween genes encoding cytochrome P450s involved in ecdysteroid biosynthesis in the cotton bollworm Helicoverpa armigera. Bull. Entomol. Res. 107, 85–95. https://doi.org/10.1017/S0007485316000663

Zheng, Y., Zhang, W., Xiong, Y., Wang, J., Jin, S., Qiao, H., Jiang, S., Fu, H., 2023. Dual roles of CYP302A1 in regulating ovarian maturation and molting in Macrobrachium nipponense. The Journal of Steroid Biochemistry and Molecular Biology 232, 106336. https://doi.org/10.1016/j.jsbmb.2023.106336

Zhong, Y.-W., Fan, Y.-Y., Zuo, Z.-Q., Shu, R.-G., Liu, Y.-Q., Luan, J.-B., Li, F., Liu, S.-S., 2023. A chromosome-level genome assembly of the parasitoid wasp Eretmocerus hayati. Sci Data 10, 585. https://doi.org/10.1038/s41597-023-02450-2

Zhou C, Zheng X, Wang L, Yue B, DU C, Liu X. 2023. The first chromosome-level genome assembly and transcriptome sequencing provide insights into cantharidin production of the blister beetles. Integr Zool. https://doi.org/10.1111/1749-4877.12783

Zhou, D., Liu, X., Sun, Y., Ma, L., Shen, B., Zhu, C., 2015. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis. PLoS ONE 10, e0143387. https://doi.org/10.1371/journal.pone.0143387

Zhou, H., Chen, K., Yao, Q., Gao, L., Wang, Y., 2008. Molecular cloning of Bombyx mori cytochrome P450 gene and its involvement in fluoride resistance. J Hazard Mater 160, 330-336.

Zhou, J., Qiu, L., Liang, Q., Zhou, Y., Sun, J., Gao, Q., He, H., Ding, W., Xue, J., Li, Y., 2023. Transcriptomic Analysis Reveals the Detoxification Mechanism of Chilo suppressalis in Response to the Novel Pesticide Cyproflanilide. IJMS 24, 5461. https://doi.org/10.3390/ijms24065461

Zhou, J., Zhang, G., Zhou, Q., 2012. Molecular characterization of cytochrome P450 CYP6B47 cDNAs and 5′-flanking sequence from Spodoptera litura (Lepidoptera: Noctuidae): Its response to lead stress. Journal of Insect Physiology 58, 726–736. https://doi.org/10.1016/j.jinsphys.2012.02.008

Zhou, M., Liu, Y., Wang, Y., Chang, Y., Wu, Q., Gong, W., Du, Y., 2024. Effect of High Temperature on Abamectin and Thiamethoxam Tolerance in Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). Insects 15, 399. https://doi.org/10.3390/insects15060399

Zhou, S., Campbell, T.G., Stone, E.A., Mackay, T.F.C., Anholt, R.R.H., 2012. Phenotypic Plasticity of the Drosophila Transcriptome. PLoS Genet 8, e1002593. https://doi.org/10.1371/journal.pgen.1002593

Zhou, X., Ma, C., Li, M., Sheng, C., Liu, H., Qiu, X., 2010. CYP9A12 and CYP9A17 in the cotton bollworm, Helicoverpa armigera : sequence similarity, expression profile and xenobiotic response: Comparison of CYP9A12 and CYP9A17 of Helicoverpa armigera. Pest. Manag. Sci. 66, 65–73. https://doi.org/10.1002/ps.1832

Zhou, X., Sheng, C., Li, M., Wan, H., Liu, D., and Qiu, X. 2010. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm, Helicoverpa armigera. Pestic Biochem Physiol 97, 209-213.

Zhou, X., Song, C., Grzymala, T., Oi, F., Scharf, M., 2006. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes. Insect Mol Biol 15, 749-761.

Zhou, X., Ye, Y.-Z., Ogihara, M.H., Takeshima, M., Fujinaga, D., Liu, C.-W., Zhu, Z., Kataoka, H., Bao, Y.-Y., 2020. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology 123, 103428. https://doi.org/10.1016/j.ibmb.2020.103428

Zhou, X., Yuan, H., Ye, N., Rong, C., Li, Y., Jiang, X., Cao, H., Huang, Y., 2024. CYP4G subfamily genes mediate larval integument development in Spodoptera frugiperda. Journal of Economic Entomology toae115. https://doi.org/10.1093/jee/toae115

Zhou, Y.-F., Zhou, M., Wang, Y.-Y., Jiang, X.-Y., Zhang, P., Xu, K.-K., Tang, B., Li, C., 2023. Characterization of the TcCYPE2 Gene and Its Role in Regulating Trehalose Metabolism in Response to High CO2 Stress. Agronomy 13, 2263. https://doi.org/10.3390/agronomy13092263

Zhou, Z., Dou, W., Li, C., Wang, J., 2022. CYP314A1 ‐dependent 20‐hydroxyecdysone biosynthesis is involved in regulating the development of pupal diapause and energy metabolism in the Chinese citrus fruit fly, Bactrocera minax. Pest Management Science 78, 3384–3393. https://doi.org/10.1002/ps.6966

Zhu, B., Xu, M., Shi, H., Gao, X., Liang, P., 2017. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). BMC Genomics 18, 380. https://doi.org/10.1186/s12864-017-3748-9

Zhu, F., Liu, N., 2008. Differential expression of CYP6A5 and CYP6A5v2 in pyrethroid-resistant house flies, Musca domestica. Arch Insect Biochem Physiol 67, 107-119.

Zhu F, Feng JN, Zhang L, Liu N. 2008. Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Molecular Biology 17: 27-37

Zhu, F., Li, T., Zhang, L., Liu, N., 2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol 8, 18.

Zhu, F., Moural, T.W., Nelson, D.R., Palli, S.R., 2016. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s. Sci Rep 6, 20421. https://doi.org/10.1038/srep20421

Zhu, F., Moural, T.W., Shah, K., Palli, S.R., 2013. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genomics 14, 174.

Zhu, F., Parthasarathy, R., Bai, H., Woithe, K., Kaussmann, M, Nauen, R., Harrison, D. A, Palli, S. R. 2010. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc Natl Acad Sci U S A 107, 8557-62.

Zhu, F., Sams, S., Moural, T., Haynes, K.F., Potter, MF., Palli, S.R., 2012. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS One 7, e31037.

Zhu, J., Chen, Y.-R., Geng, T., Tang, S.-M., Zhao, Q., Shen, X.-J., 2021. A 14-amino acids deletion in BmShadow results to non-moult on the 2nd instar in the bivoltine silkworm, Bombyx mori. Gene 777, 145450. https://doi.org/10.1016/j.gene.2021.145450

Zhu, J., Chen, Y., Zhao, Q., Tang, S., Huang, J., Shen, X., 2019. Expression profile of several genes on ecdysteroidogenic pathway related to diapause in pupal stage of Bombyx mori bivoltine strain. Gene 707, 109–116. https://doi.org/10.1016/j.gene.2019.03.054

Zhu, J., Feng, J., Tian, K., Li, C., Li, M., Qiu, X., 2022. Functional characterization of CYP6G4 from the house fly in propoxur metabolism and resistance. Pesticide Biochemistry and Physiology 187, 105186. https://doi.org/10.1016/j.pestbp.2022.105186

Zhu, J., Qu, R., Wang, Y., Ni, R., Tian, K., Yang, C., Li, M., Kristensen, M., Qiu, X., 2023. Up-regulation of CYP6G4 mediated by a CncC/maf binding-site-containing insertion confers resistance to multiple classes of insecticides in the house fly Musca domestica. International Journal of Biological Macromolecules 253, 127024. https://doi.org/10.1016/j.ijbiomac.2023.127024

Zhu, W., Yu, R., Wu, H., Zhang, X., Liu, Y., Zhu, K.Y., Zhang, J., Ma, E., 2016. Identification and characterization of two CYP9A genes associated with pyrethroid detoxification in Locusta migratoria. Pesticide Biochemistry and Physiology 132, 65–71. https://doi.org/10.1016/j.pestbp.2016.01.001

Zhu, Y.C., Snodgrass, G.L., 2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol Biol 12, 39-49.

Ziegler, D. M 2002. An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34, 503-511.

Zijlstra, J., Vogel, E., Breimer, D., 1984. Strain-differences and inducibility of microsomal oxidative enzymes in Drosophila melanogaster flies. Chem Biol Interact 48, 317-338.

Zimmer, C.T., Bass, C., Williamson, M.S., Kaussmann, M., Wölfel, K., Gutbrod, O., Nauen, R., 2014. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus. Insect Biochemistry and Molecular Biology 45, 18–29. https://doi.org/10.1016/j.ibmb.2013.11.008

Zimmer, C.T., Garrood, W.T., Singh, K.S., Randall, E., Lueke, B., Gutbrod, O., Matthiesen, S., Kohler, M., Nauen, R., Davies, T.G.E., Bass, C., 2018. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper. Current Biology 28, 268-274.e5. https://doi.org/10.1016/j.cub.2017.11.060

Zimmer, C.T., Nauen, R., 2011. Cytochrome P450 mediated pyrethroid resistance in European populations of Meligethes aeneus (Coleoptera: Nitidulidae). Pesticide Biochemistry and Physiology 100, 264–272. https://doi.org/10.1016/j.pestbp.2011.04.011

Zoh, M.G., Bonneville, J.-M., Tutagata, J., Laporte, F., Fodjo, B.K., Mouhamadou, C.S., Sadia, C.G., McBeath, J., Schmitt, F., Horstmann, S., Reynaud, S., David, J.-P., 2021a. Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Sci Rep 11, 19501. https://doi.org/10.1038/s41598-021-99061-x

Zoh, M.G., Gaude, T., Prud’homme, S.M., Riaz, M.A., David, J.-P., Reynaud, S., 2021b. Molecular bases of P450-mediated resistance to the neonicotinoid insecticide imidacloprid in the mosquito Ae. aegypti. Aquatic Toxicology 236, 105860. https://doi.org/10.1016/j.aquatox.2021.105860

Zumwalt, J.G., Neal, J.J., 1993. Cytochromes P450 from Papilio polyxenes: Adaptations to host plant allelochemicals. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 106, 111–118. https://doi.org/10.1016/0742-8413(93)90261-I

Zou, F., Guo, Q., Shen, B., Zhu, C., 2019. A cluster CYP6 gene family associated with the major QTL is responsible for the pyrethroid resistance in Culex pipiens pallen. Insect Mol Biol imb.12571. https://doi.org/10.1111/imb.12571

Zuluaga, S., Fernandez, G.J., Mejía-Jaramillo, A.M., Lowenberger, C., Triana-Chavez, O., 2025. Exploring novel pyrethroid resistance mechanisms through RNA-seq in Triatoma dimidiata from Colombia. Current Research in Insect Science 7, 100103. https://doi.org/10.1016/j.cris.2024.100103

Zuo, Y., Shi, Y., Zhang, F., Guan, F., Zhang, J., Feyereisen, R., Fabrick, J.A., Yang, Y., Wu, Y., 2021. Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm. PLoS Genet 17, e1009680. https://doi.org/10.1371/journal.pgen.1009680

references.txt · Last modified: 2025/01/12 14:01 by renefeyereisen